PD-10: Natural Language Processing in GIScience Applications

Abstract

Natural Language Processing (NLP) has experienced explosive growth in recent years. While the field has been around for decades, recent advances in NLP techniques as well as advanced computational resources have re-engaged academics, industry, and the general public. The field of Geographic Information Science has played a small but important role in the growth of this domain. Combining NLP techniques with existing geographic methodologies and knowledge has contributed substantially to many geospatial applications currently in use today. In this entry, we provide an overview of current application areas for natural language processing in GIScience. We provide some examples and discuss some of the challenges in this area.

Keywords

natural language processing, text analytics, toponym disambiguation, topic modeling, question answering

1 Definitions

- Gazetteer: A dictionary or index of geographical names.
- n-gram: A sequence of n tokens, where n is a number. N-grams typically range between 1 (uni-gram) and three (tri-gram).
- Token: The building blocks of natural language. Small units of text that (e.g., characters, words, combinations of words) that have been split from a larger document or corpus.
- Toponym: A place name. Often derived from a topographic feature.
2 Natural Language Processing and GIScience

Natural Language Processing (NLP) is an interdisciplinary research area that draws from the fields of linguistics, computational sciences, and many other related disciplines including geography and geographic information science (GIScience) that develop methods to analyze human language data. While the field includes a wide variety of topics it is primarily concerned with applying computational techniques to analyze human language in a variety of forms. In recent years, the field has focused on the extraction of patterns and meaning from large volumes of natural language data such as text and speech audio. Today, the field is moving towards “understanding” concepts and themes presented in natural language with the goal of answering questions and informing decision making.

Historically, the domain of natural language processing has focused on the extraction of structured content from unstructured text. Early Symbolic NLP approaches involved interpreting text and speech through a series of user-defined rules. In the 1980s and 1990s various statistical inference techniques were devised for identifying and applying these rules to natural language. More recently, the domain has seen a shift towards the use of machine learning, including deep learning, Neural, methods. These recent approaches do not take a rule-based approach but rather aim to understand natural language through statistical methods which can identify linguistic properties of words, sentences, or documents.

Though NLP does not fall solely within the discipline of Geography, a lot of human language is situated in geographic space and time and might make reference to inherently geospatial themes such as culture. Natural language varies by region meaning that GIScientists are well situated to process, identify, and contextualize patterns in language. Within the field of GIScience, NLP has been used to better understand a wide variety of geographic phenomena through identification of places, events, and activities as well as the extraction of linguistic patterns related to these entities. NLP techniques offer insight into geographic phenomenon that may not be accessible through traditional spatial and temporal analysis.

GIScientists are also able to leverage much of their existing expertise when processing natural language. Knowledge of spatial relationships, regional hierarchies and geographic laws & theories when combined with many leading NLP approaches result in cutting edge applications, many of which are actively used today. In the section to follow, a number of different NLP techniques are discussed with a specific focus on applications within the field of GIScience. The intent is to demonstrate how natural language processing is being used within GIScience applications today and discuss some of the challenges moving forward.
3 Applications of Natural Language Processing in GIScience

A number of natural language processing applications exist within GIScience. This section summarizes a small, but key set of application areas that have emerged in recent years.

3.1 Toponym disambiguation

Important locations on the Earth are usually given labels or toponyms to allow them to serve in a common reference system. When someone makes a reference to Montréal, Canada, for example, there is shared understanding of where this place is located on the Earth as well as what type of place it is, namely a city. Toponym disambiguation is the process of (a) identifying Montréal as a location, and (b) differentiating it from any other location labeled as Montréal.

To discuss toponym disambiguation in more detail, we must first take a large step back and discuss some of the building blocks necessary for many natural language processing tasks. The first step involves deconstructing natural language to a format that enables computational analysis, through a method known as tokenization. Tokenization is the process of breaking down natural language into smaller lexical units which are referred to as tokens. Depending on the task, these units range from individual characters, to words (or sequences of words known as n-grams), sentences, paragraphs, or documents. The process of tokenization is easier for some languages than others. For instance, romance languages often delimit words with spaces whereas some Asian languages, such as Chinese, do not mark word boundaries with space delimiters making the process more complex [28].

In many languages, people use different inflection forms of words. For instance, democratic, democracy, democracies, and democratization all reference similar concepts, but for grammatical reasons the different words exist. For many applications these different concept references can be considered the same, thus it is advantageous to reduce them to a single token. Stemming is a simple solution to this problem that typically involves dropping the end of words such as derivational affixes, to reduce them to only those characters that the words have in common. For instance, a stemming approach to the above terms might be Democra. Lemmatization is a more complex approach that aims to identify the root term of the series of similar words. Often this root word is a term that represents a base concept rather than a sequence of common characters. For instance, a lemmatization of the example above might be Democracy. Lemmatization and stemming are often done as a first, data cleaning step along with tokenization.

Given these tokens, we come back to our objective of identifying and labeling these tokens. To achieve this, we use a technique known as Named Entity Recognition (NER). NER is the process of labeling and categorizing lexical units extracted from unstructured natural language. This is typically an automated
process of comparing tokenized entities found in unstructured text to an existing
structured dictionary or determining the category of an entity based on the
context in which the token exists. Pre-defined categories are often entities such
as people, places, organizations, currencies, etc. This is not a trivial process
as natural language can be quite complex and there is often a large amount of
ambiguity in the meaning of words. Consider, for example, the sentence below.

I watched the Chicago Bulls game last night.

In this example, the term *Bulls* is ambiguous on its own as it is most often
used to reference male cattle. It is only through analysis of contextual informa-
tion that one is able to determine that *Bulls* in this instance refers to the
Chicago-based professional basketball team. A state-of-the art NER applica-
tion, such as Apache OpenNLP, would annotate each of the n-gram tokens in
the example text with Chicago being labeled as a city in the United States, and
the *Chicago Bulls* being labeled as a professional sports team. Today, many
leading NER systems provide close to human-level performance in annotating
unstructured text.

Even in the simple example above, the importance of geography is appar-
ent. The region in which cattle are found, the city of Chicago, and dominance
of basketball in discourse all relate to geography, and geographic knowledge
can be leveraged in processing and labeling this information. NER is an im-
portant methodology to GIScientists as it is used in the first task of toponym
disambiguation, which is that task of identifying and labeling a token as a ge-
ographic entity. Toponym disambiguation is typically accomplished through a
look-up/matching process involving a geographic dictionary or what is often
referred to as a *digital gazetteer* [13]. For lesser known or local toponyms, iden-
tification based on geographic context may be used. For instance, Hu et al. [16]
use a geospatial clustering approach and contextual information from surround-
ing words to learn and train a machine learning model to identify toponyms
based on unique spatial and linguistic patterns.

Once a token is identified as a toponym, the next challenge is differentiating
it from other toponyms. The nature of human language and culture is that
locations are often assigned the same label. For instance, there are at least 88
different locations in the United States with the name *Washington*, including
cities, monuments, and a federal district. Identifying *which* Washington is the
second task in toponym disambiguation. This is often a challenging task and in-
volves examination of the contextual information and descriptive terms through
which the toponym is referenced. In the Chicago Bulls example above, we can
probabilistically identify *Chicago* as a large city in north-eastern Illinois, USA
in a number of ways. First, Chicago, Illinois has the largest population of any
known Chicago, and is therefore more likely to be mentioned in text. Second,
an NER would likely identify the Bulls basketball team as an entity with a *home
town* that also linked to the Chicago in Illinois. Leading research in this area
has used a range of approaches that rely on existing geographic methods and
spatial knowledge including graph-based approaches to linking toponyms [8],
topic modeling for disambiguation [18], and co-occurrence models [24]. NER in general, and toponym disambiguation, more specifically, are central to foundational aspects of GIScience such as geocoding [11] and geographic information retrieval [17].

3.2 Spatial relationships in text

Aside from extracting geographic entities from natural language, researchers and industry professionals are also very interested in understanding the relationships between geographic (and non-geographic) entities. Natural language data provides a rich source of relationship information as contributors of text often describe these relationships with rich detail. For instance if a body of text discusses the migratory patterns of people between two cities, this information could be extracted and represented as a geospatial flow between two network nodes in a GIS application. NLP extraction methods could also be used to identify mode of travel and quantify number of migrants.

As with toponym disambiguation, identifying and extracting relationships within unstructured natural language can be difficult. It requires us to determine which descriptors are applied to which words and which actions involve which actors. In the field of NLP, this process is called coreference resolution. Coreference resolution is the process of identifying which sub-components of a sentence or document, refer to which other sub-components, or tokens. In natural language, we often refer to specific entities or concepts through a variety of different terms and determine which entity is associated with which idea can be difficult for humans, let alone computational model. Take the following example.

Seattle gets more days of rain than New York City, but it receives less total rainfall per year.

In this case, we have two proper noun city names, Seattle and New York City as well as some facts about these cities. A coreference resolution task arises in the use of the pronoun, it. Within the context of this statement, it either refers to Seattle or New York City, and determining the correct referent is important when assigning information to a location. This may be a trivial task for a human to resolve, but the ambiguity of human language can often be difficult to represent computationally.

There are many ways to resolve ambiguity of coreferences within natural language and from a geospatial approach, we can leverage existing geographic knowledge. Early work in this discipline involved developing methods that applied a set of grammatical rules to natural language. This often meant the development of parse trees which aimed to represent dependency between tokens. Over the past couple of decades, techniques have been developed that take a probabilistic approach to identifying relationships through the construction of constituency parsing trees. While not all relationships are spatial, identifying relationships between entities can sometimes involve a spatial component, be it
explicitly spatial (e.g., The museum in Montréal), or through regional or cultural context (e.g., The woman used the Algonquian word for fish). For example, Vasardani et al. [26] extracted mental representations of urban environments for use in emergency situations from verbal descriptions of places. Spatial hierarchies have also been extracted from user-generated text for use in qualitative spatial reasoning applications [29]. These, and many other processes demonstrate that spatial relationships can be identified and extracted from unstructured linguistic content.

Having a background in GIScience also means that we are not solely reliant on the information extracted from natural language. We can use NLP techniques in conjunction with our existing geospatial expertise [22]. For example, Tobler’s First Law of Geography can be applied in many cases to leverage the similarity of features in close proximity. Geographical theories such as Central Place Theory can be used to explain the relationships between nearby settlements, and gravity models can be employed to identify transfer and flow of entities described in text.

3.3 Discovering thematic patterns

Another approach to natural language processing is less concerned with labeling tokens and identifying individual toponyms in text and more interested in the broader themes or topics represented in natural language. The idea in this thematic approach to language is to extract groupings of terms that represent a set of topics on which a document can be characterized. This is important for representing ideas in documents as a whole as well as comparing themes across lexical units. The GIScience community has leveraged this approach to identify thematic patterns within geographic space and observe changes in patterns over time. One approach to this problem which has seen extensive use in the field of GIScience aims to extract themes or topics from corpora through an unsupervised probabilistic approach, called Topic Modeling that identifies the co-occurrence of tokens within documents. For example, applications of this technique have been used in clustering social media posts [14], location recommendation services [15], and ad hoc thematic search engines [3]. For instance, the Pteraform interactive search platform [1] shown in Figure 1 is built on top of geographically tagged Wikipedia data, and demonstrates how a topic modeling approach can be used to geographically depict themes over space and time. Notably, these approaches tend to ignore the sequence of tokens in a document or corpora and instead take what is commonly referred to as a bag-of-words approach.

Characterizing natural language text by themes is a form of classification, and there are also other ways we can classify a text. Sentiment analysis is the process of identifying and examining affective states within text and usually includes characterizing the emotions and attitudes towards a theme or topic. Techniques for identifying and extracting sentiment range from examining the polarity of individual tokens, to the emotional state of a document or grouping of tokens. Sentiment analysis is a notoriously challenging field of study as it involves analysis of subjective information and inference of intention by the
language contributor. Applications of sentiment analysis in GIScience have included classification of parks through visitor contributions [20], understanding disaster response [4], and a plethora of research on attitudes towards travel destinations and places of interest [7, 19, 5].

3.4 Question Answering and Natural Language Generation

While humans can understand a sentence and the relationship between words through reading textual content or verbal communication, computers work in the realm of numerical values. Recent advances in NLP have moved towards not only representing words as numbers, but also the relationships between words. This allows analysts to perform mathematical and logical operations to compare terms, extract complex concepts, and better understand the ideas presented in natural language. This most often involve assigning a real-value representation to a sequence of terms and representing each unit as a numerical vector. Neural network-based methods such as word2vec or doc2vec are typically used to convert natural language to a series of numerical word vectors or matrices. The goal of this approach is to develop word embeddings. These encode the meaning of words, sentences, and concepts such that words that are closer in meaning are also closer in real-value vector space. Essentially, this involves embedding
a multi-dimensional concept into a continuous lower-dimensional vector space. These word embeddings serve as the base unit on which many modern classification and predictive NLP tasks, including those in the geospatial field, are performed and often is a key pre-processing step for these other tasks.

Other techniques such as recurrent and convolutional neural networks have been applied to NER tasks with the goal of identifying geographic locations and places. Adams and McKenzie [2] used a character-level convolutional neural network to georeference noisy textual content and Cardoso et al. [6] used a variation on recurrent neural network for toponym resolution in text. Rather than applying rule-based approaches to identifying the features, deep learning methods use a representative classification approach to identifying latent features in natural language. These models thrive on large training datasets and the availability of rich and robust training data on which a model can be trained is critical. Transformer models such as Bidirectional Encoder Representations from Transformers (BERT) published by Google, have recently emerged. In this case, a learning model is pre-trained on an exceptionally large, generic dataset and then fine tuned for a specific task or application area. These attention-mechanized transformer models [27] have been shown to improve the accuracy and relevancy of many NLP-based applications, such as language translation and document search. These types of models are also being used for geospatial applications such as address validation [30], and identifying the locations of criminal organizations [23].

Question answering is a sub field within natural language processing, information retrieval, and artificial intelligence, in which a natural language questions, typically posed by a human are interpreted by a machine and appropriate responses are generated. In essence, this a fundamental test for many natural language processing techniques in that responding to a question requires comprehension of the concepts presented in the question itself. This approach involves a high level of automated reasoning. The field of geographic question answering has recently emerged with the goal of identifying and understanding the relationship between geographic features, places, and people through the use of many deep learning approaches. The nuances of geospatial concepts in natural language is unique and designing a system that can interpret and understand these concepts and relationships can be challenging. Take for example the question below.

How many people live in the capital of the third largest country on earth?

Not only does the question above require entities to be extracted and labeled through an NER task or thematically encoded through a neural network, but it also requires leveraging existing geospatial knowledge such as administrative boundary hierarchies. For instance a capital is a city, a city exists within state, and a state with country. The term largest is ambiguous here as well as it is unclear if this is in reference to population volume or physical area. Finally, third, it requires a system to know the populations or areas of all countries,
rank them, and extract the third largest. While natural language processing
techniques are increasingly able to learn many of these concepts, understanding
the relationships and answering the question also involves accessing knowledge
graphs, geographic databases, and range of other technologies. This area is
proving to be a burgeoning subfield of GIScience. Scheider et al. [25] discuss
the challenges associated with building a question-based geographic information
system and how existing spatial techniques and technologies can be used within
such a service. Mai et al. [21] demonstrate possibilities and limitations of geo-
graphic question answering through the use of geospatially enabled knowledge
graph embeddings.

The complement to question answering is natural language generation (NLG).
This approach aims to generate natural language text or speech based on seman-
tically encoded concepts. In many ways, the second part of question answering
demands generating natural language based on the interpreted understanding
of the original question. Applied work in this field has predominantly focused
on automating reports and responses to questions. Within the geographical sci-
ences we see NLG techniques being applied to generating weather reports [12],
descriptions of places and remotely sensed imagery [10], and the broader focus
on chatbots and automated assistants capable of responding to basic questions.

4 Challenges

A number of challenges exist within the domain of natural language processing
and many of them are uniquely spatial. Many of these were mentioned in the
previous sections, but here the challenges are outlined in further detail.

Using NLP to interpret fine-grained spatial relationships in text is an active
area of research. While many current NLP approaches are able to identify con-
cepts, ideas, and relationships within natural language, surprisingly few of them
explicitly model spatial relationships. Concepts such as spatial autocorrelation
are fundamental to GIScience, yet very few approaches incorporate this idea in
the process of understanding natural language.

Spatial cognition is a branch of cognitive psychology that studies the ways in
which people use spatial information to gain knowledge, self locate, and wayfind.
This field is closely linked with natural language processing in that understand-
ing human-contributed natural language necessitates an understanding of how
humans conceptualize space and communicate those concepts in language [9].
This presents a unique challenge, as how humans conceptualize and commu-
nicate spatial concepts is not fully understood, therefore making it difficult to
train a computational model to represent spatial information in a similar way.

While substantial advances have been made in toponym disambiguation and
co-reference resolution within NLP research, it still remains as a challenge.
Given that places are labeled by humans, they tend to change over time, or have
multiple, often localized, names. Humans reference places in different ways and
the ability to identify a single place based on various colloquial references to the
location remains a challenge.
Lastly, the automated generation of spatially-aware narratives is a challenge area that will likely see advances in the coming years. This will involve the integration of NLP more substantially in location-based systems such as tourism applications and will leverage geographic knowledge graphs and existing gazetteers.

5 Learning Objectives

The objective of this chapter is to

- Explain how natural language processing is being used in geographic information science applications.
- Differentiate between some of the key uses of natural language processing in geography and GIScience.
- Identify how spatial is special in the context of natural language processing.
- Identify challenges and future directions for applications of NLP in GIScience.

6 Instructional Assessment Questions

1. What does the field of geography bring to the discussion of natural language processing?
2. What are the two components necessary for toponym disambiguation?
3. How is geographic question answering different than traditional question answering?
4. What is the difference between stemming and lemmatization?

7 Additional Resources

- Apache OpenNLP https://opennlp.apache.org/index.html
- Stanford Natural Language Processing Toolkit https://nlp.stanford.edu/
- Python Natural Language Toolkit module https://www.nltk.org/
- R GeoParser package https://rdrr.io/cran/geoparser/
- An Extensible and Unified Platform for Evaluating Geoparsers https://geoai.geog.buffalo.edu/EUPEG/
- Creating the Corpus (Spatial Language) https://geospatiallanguage.massey.ac.nz/creatingthecorpus.htm
- EarthLings (Computational Linguistic Atlas) http://www.earthlings.io/
References

