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Abstract

Special events, such as festivals, parades, and protests, can cause sudden surges
or disruptions in travel demand, thereby placing stress on transportation sys-
tems. As shared micromobility becomes an increasingly important part of urban
transportation, understanding how these events affect its ridership is crucial for
ensuring safety, efficiency, and sustainability. In this study, we investigate the
causal impacts of various event types by applying Double Machine Learning
(DML) to high-resolution shared micromobility trip data (e-bikes and e-scooters)
and multi-source event records in Washington, D.C. These events include
government-authorized large events, independently organized small events, and
government-registered protests. Our results show that many events have far
stronger actual influences on shared micromobility than correlational analysis
suggests, as confounding factors can mask their actual impact. For instance,
festivals show four to seven times greater impact under causal estimation. We
also find that the increase in gas prices suppresses discretionary travel, result-
ing in reduced shared micromobility usage during events. Another key insight
is the different demand mechanisms: large events interact with temporal and
built environment features to boost ridership, whereas small events are primar-
ily influenced by temporal features, such as event duration and weather, with
little influence from infrastructure factors. These findings highlight the need for
tailored policies, including infrastructure investment for large events and oper-
ational incentives for smaller ones. This research provides a causal foundation
for urban mobility planning, supporting the development of more resilient and
efficient transportation systems in event-dense urban areas.

Keywords: Shared micromobility; Special events; Washington, D.C.; Causal
inference; Double Machine Learning; SHAP
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1 Introduction

Shared micromobility has become an important piece of the urban transportation
ecosystem, enhancing first- and last-mile connectivity while reducing emissions, noise,
and fuel consumption (Gössling, 2020; Nikiforiadis et al., 2021; Shaheen, 2016). As
its adoption speeds up worldwide, understanding when and why demand increases or
decreases is important not only for researchers but also for operators and city offi-
cials (Hosseinzadeh, Algomaiah, Kluger, & Li, 2021b; Marsden & Docherty, 2013;
Reck, Haitao, Guidon, & Axhausen, 2021). Past studies have linked many temporal
and environmental factors to shared micromobility usage (Bai & Jiao, 2020; Elmash-
hara, Silva, Sá, Carvalho, & Rezazadeh, 2022; Hosseinzadeh, Algomaiah, Kluger, & Li,
2021a), but shifts driven by specific events remain less studied despite their practical
significance (Younes, Nasri, Baiocchi, & Zhang, 2019; Zhu et al., 2017). Understanding
the causal impacts of these events on micromobility usage will enhance user satis-
faction, optimize system efficiency, and inform strategic transportation planning for
safety and sustainability (Rodrigues, Markou, & Pereira, 2019).

In this study, we define special events as planned, scheduled public activities
whose time, location, and duration are known in advance and that are exogenous to
the shared micromobility system. Such events, including sports, festivals, concerts,
parades, and protests, represent persistent yet under-examined challenges in trans-
portation planning. This aligns with standard transportation operations terminology,
where planned special events are public activities that can significantly impact nor-
mal network operations due to increased demand or decreased capacity (Dunn, 2007;
Latoski et al., 2003). In contrast, non-special events in our context refer to ordi-
nary days without an identified event. Unplanned incidents (e.g., crashes, weather
disruptions, service outages/strikes) that are not scheduled fall outside our current
scope as well. Accordingly, our analysis encompasses both planned and exogenous
events (large permitted events, independently organized small events, and government-
registered protests) and excludes unplanned disruptions (Dong, Ding, Wu, & Li,
2025; Fuller, Sahlqvist, Cummins, & Ogilvie, 2012) and endogenous shocks (C.-C. Lu,
2016; Manout, Diallo, & Gloriot, 2024) originating within the micromobility system
(e.g., pricing changes, geofencing, and fleet reallocations) or stemming from policy
interventions (Braun et al., 2016) enacted by the operator or regulator.

While conventional traffic models effectively capture recurrent patterns linked to
habitual behaviors (Hafezi, Liu, & Millward, 2019; Moreira-Matias, Gama, Ferreira,
Mendes-Moreira, & Damas, 2013; Pel, Bliemer, & Hoogendoorn, 2012), they struggle
with accurately predicting disruptions caused by special events (Markou, Kaiser, &
Pereira, 2019). Apart from global mega-events such as the Olympic Games or the
World Cup (Currie & Shalaby, 2012; Kassens, 2009), city-scale events often receive
minimal analytical attention despite their substantial impacts on overloaded transit
networks, unpredictable modal shifts, and widespread travel disruption (Cottrill et al.,
2017).

Two main challenges have limited research into the effects of events on micromo-
bility. First, collecting a comprehensive, time-specific record of events across various
venues and neighbourhoods is labor-intensive (Pereira, Rodrigues, & Ben-Akiva, 2015;
Rashidi, Abbasi, Maghrebi, Hasan, & Waller, 2017). Second, separating an event’s
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true causal impact from confounding influences is difficult, given co-occurring weather
anomalies, concurrent events, seasonal trends, and infrastructure issues. The first chal-
lenge can now be addressed through the proliferation of internet data sources (e.g.,
online calendars, social media, news archives), enabling systematic event data collec-
tion (Rashidi et al., 2017). The second could be handled by robust causal inference
methods to disentangle event-specific effects (Gangl, 2010; Yumin et al., 2021). These
challenges are not unique to shared micromobility; they occur across various travel
modes and are often amplified during unplanned disruptions. Concurrently, causal
studies in transit have examined event- or disruption-driven impacts using DML
designs (Huber, Meier, & Wallimann, 2022; Zhang, Wang, Fan, Song, & Shibasaki,
2024). In this study, micromobility functions as a measurement tool rather than the
source of the problems. Its quick responsiveness (short booking horizons), flexibility
(near-venue parking and geofenced operations), and detailed spatial coverage (dense
station/zone networks) make it ideal for detecting localized, time-sensitive demand
shifts around events. We focus on planned exogenous special events, where the timing
and location are known in advance, allowing for clear treatment definition and cred-
ible counterfactuals. Notably, our approach is mode-neutral and applicable to other
modes when data support similar levels of detail.

Washington, D.C. (DC), the capital of the United States, is a vibrant city with
a rich civic and cultural calendar (Smith, 2008). We choose DC because it provides
detailed micromobility data, frequent planned–exogenous events, and transporta-
tion management emphasis. Each year, it hosts hundreds of citywide special events
and countless neighbourhood gatherings. A systematic understanding of their trans-
portation impacts is important to furthering DC’s sustainable transportation efforts.
Accordingly, this study compiles three complementary event datasets for 2023-2024:
(1) government-authorized large events, (2) independently organized small events,
and (3) government-registered protests. We then link these data to 9.5 million high-
resolution e-bike and e-scooter trip records. Then, the causal effects of each event
category and its subcategories are estimated using state-of-the-art causal inference
techniques on the micromobility ridership data. Event impacts are inherently spatial:
venues create localized, short-term demand spikes and temporary supply or availabil-
ity constraints that fade with distance. In this study, we analyze micromobility activity
around event venues and summarize effects within set proximity zones, making these
spatial patterns clear while maintaining transparency. Lastly, the causal findings are
then set against the correlational results for comparison. More specifically, this work
addresses the following four research questions (RQ):

RQ1 Correlational change in trip volumes: What is the statistical association
between the occurrence of special events and shared micromobility trip volumes?
Furthermore, how do these associations vary across different event categories and
their respective subcategories? To address this question, we employ a paired t-test
to compare trip volumes during events with those during chosen control periods.

RQ2 Causal effect and comparison to correlation: After controlling for covariates,
what is the average causal effect of each event category on shared micromobility trip
volumes? How do these causal effects vary across event subcategories, and how do
they differ from the correlational relationships identified in RQ1? Here we estimate
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the average treatment effect (ATE) for each event category and subcategory using
Double Machine Learning (DML) with cross-fitting, which orthogonalizes high-
dimensional covariates, producing unbiased causal estimates. We then compare the
causation results with the correlations.

RQ3 Contrasting associational and causal influences of key variables during
events: Which variables exhibit the strongest association with micromobility trip
volumes during events? How do the influences of these variables differ when esti-
mated through a causal model versus a correlational one? To address these points,
we identify the top features using a LightGBM model and SHAP value analysis,
then quantify their influence using both negative-binomial Generalized Linear Model
(GLM) (association) and DML models (causation).

RQ4 Heterogeneous causal effects within subcategories: To what extent do the
significant variables causally affect micromobility usage when a specific subcate-
gory of event is taking place? Here, we estimate conditional average treatment
effects (CATE) for the significant variables by limiting the sample to event-period
observations and employing DML to each variable in turn.

2 Related work

2.1 Factors Influencing Shared Micromobility Usage

Shared micromobility (e-scooters, e-bikes) ridership is shaped by temporal, environ-
mental, built-environment, and sociodemographic factors (Ahillen, Mateo-Babiano,
& Corcoran, 2016; El-Assi, Salah Mahmoud, & Nurul Habib, 2017; Scott & Ciuro,
2019; K. Wang, Akar, & Chen, 2018). Temporal patterns show higher ridership during
peak hours (Noland, Smart, & Guo, 2019; Shen, Zhang, & Zhao, 2018), and on week-
ends (Noland, Smart, & Guo, 2016). Warmer temperatures and moderate humidity
boost ridership (Gebhart & Noland, 2014; Heaney, Carrión, Burkart, Lesk, & Jack,
2019; Reck, Martin, & Axhausen, 2022), whereas adverse weather conditions (e.g.,
rain, snow, extreme temperatures) suppress demand (An, Zahnow, Pojani, & Corco-
ran, 2019; Corcoran, Li, Rohde, Charles-Edwards, & Mateo-Babiano, 2014; Mattson
& Godavarthy, 2017; Noland, 2021). Gasoline prices have a positive and significant
correlation with micromobility ridership and duration (P. He, Zou, Zhang, & Baiocchi,
2020).

Built environment features also critically influence micromobility ridership (Huo
et al., 2021; Noland et al., 2019). Infrastructure elements such as bike lanes (Buck
& Buehler, 2012; Y. Sun, Mobasheri, Hu, & Wang, 2017; Zou, Younes, Erdoğan, &
Wu, 2020), high intersection density (H. Yang et al., 2022), and proximity to transit
stations (Lin, Weng, Liang, Alivanistos, & Ma, 2020; Tran, Ovtracht, & d’Arcier,
2015; Yan et al., 2021) significantly boost usage. And points of interest (POIs) like
bars, restaurants, retail hubs, and recreational venues further attract trips (Faghih-
Imani, Eluru, & Paleti, 2017; Y. He, Song, Liu, & Sze, 2019; X. Ma et al., 2020; Maas,
Attard, & Caruana, 2020; R. Wang, Lu, Wu, Liu, & Yao, 2020). Distance to other bike
share stations also influences dockless e-scooter and e-bike usage (X. Wang, Lindsey,
Schoner, & Harrison, 2016).
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Certain sociodemographic features lead to higher usage, such as younger popula-
tions (Abouelela, Al Haddad, & Antoniou, 2021; Laa & Leth, 2020), areas with lower
car ownership (Günay, Dündar, & Dilekçi, 2025; Younes & Baiocchi, 2023), and higher
job density (Jin & Sui, 2024). Dockless micromobility systems also show clear links
to gender (Campisi, Skoufas, Kaltsidis, & Basbas, 2021; Cubells, Miralles-Guasch, &
Marquet, 2023), race (Aman, Zakhem, & Smith-Colin, 2021; Sanders, Branion-Calles,
& Nelson, 2020), and income (Delbosc & Thigpen, 2024; Lee, Baek, Chung, & Kim,
2021). Despite extensive work on recurrent patterns, interactions between these factors
remain underexplored, especially during special events.

2.2 Special Events’ Impact on Shared Micromobility

While special events disrupt conventional travel patterns, only a few studies have
examined their impact on micromobility systems. Existing research primarily exam-
ines how bikeshare ridership responds to public transit disruptions (Zhu et al., 2017).
For example, Fuller et al. (2012) documented ridership surges in London’s bikeshare
systems during transit strikes. Saberi, Ghamami, Gu, Shojaei, and Fishman (2018)
found that bikeshare ridership increases during that time of disruption by up to 88%.
Similarly, Younes et al. (2019) analyzed spatial-temporal ridership shifts in DC’s bike-
share network during three rail closures (7-25 days each), comparing activity one week
pre-disruption, one year prior, and post-disruption. Concurrently, Kaviti, Venigalla,
Zhu, Lucas, and Brodie (2018) attributed ridership and revenue increases at Capital
Bikeshare to the single-trip fare implemented alongside transit service interruptions
in DC.

To the best of our knowledge, limited scholarship has explored the effects of
holidays and special events on micromobility (Corcoran et al., 2014). In Louisville,
Hosseinzadeh, Karimpour, and Kluger (2021) identified a 15% increase in e-scooter
trips during holidays and special events, an effect not observed with station-based bike-
share. This indicates that people prefer the flexibility of dockless e-scooters for special
occasions. In DC, Younes, Zou, Wu, and Baiocchi (2020) further demonstrated neg-
ative impacts on scooter usage during the 2019 government shutdown but significant
positive demand during the National Cherry Blossom Festival for both scooters and
docked bikeshare systems. However, current research depends on correlational meth-
ods, making it vulnerable to confounding factors, which restrict conclusions about
causality.

2.3 Causal Inference in Transportation & Shared
Micromobility

Accurately estimating causal effects from observational data is a central challenge
in transportation research, primarily due to the presence of confounding variables
that influence both the treatment and outcome. Traditional methods, such as linear
regression or propensity score matching, struggle with high-dimensional, nonlinear
data and often rely on strong, untestable assumptions (Y. Wang, Yu, & Song, 2024).
DML emerged as a robust framework to address these limitations (Chernozhukov et
al., 2018). DML leverages the predictive power of machine learning (ML) within a
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staged modeling approach to overcome the weaknesses of general ML models and
deliver unbiased causal estimates (S. Yang et al., 2025).

The rapidly expanding application of DML in the broad transportation field moves
beyond correlations to provide robust causal evidence on how environments, policies,
and events affect travel behavior. First, a prominent application involves studying
the relationship between the built environment and travel behavior while consider-
ing residential self-selection (RSS). For instance, Ding et al. (2024) applied DML
with gradient boosting machines to quantify the RSS effect on driving distance in
Jinan, China. Similarly, Nachtigall, Wagner, Berrill, and Creutzig (2025) used DML to
capture nonlinearities in RSS and estimate spatially explicit effects of the built envi-
ronment on transport CO2 emissions. S. Yang et al. (2025) and Yin, Gui, Xu, Shao,
and Wang (2025) also adopted DML to clarify the endogenous relationships between
car ownership, vehicle kilometers traveled, and mode choice in Chinese cities. Second,
beyond built environment studies, DML has been utilized to evaluate the impacts of
policies. Huber et al. (2022) estimated how ticket discounts by Swiss Federal Rail-
ways shifted travel away from peak periods. J. Ma, Dong, Huang, Mietchen, and Li
(2022) and Zhang et al. (2024) introduced causal inference to assess the effectiveness
of COVID-19 policies on outbreak dynamics across U.S. counties. Third, DML has
also been applied to quantify the impacts of extreme weather on transportation. C. Li,
Liu, and Yang (2024) estimated the causal effect of fine-grained meteorological varia-
tions on traffic flow and speed in California. Zhiwen, Wang, Fan, Shibasaki, and Song
(2023) developed a neural network-based causal inference framework to estimate the
continuous effects of typhoons on human mobility in Japan. X. Yang et al. (2025)
later extended this approach to analyze the causal impacts of diverse public events,
including typhoons, fireworks, and earthquakes, on mobility patterns.

However, causal analysis in shared micromobility is limited, especially for applica-
tions of DML. A prominent study employed matching methods and regression analysis
to establish the causal effect of low income on the reduction of dockless e-scooter usage
(Frias-Martinez, Sloate, Manglunia, & Wu, 2021). Only one study implemented DML
in the context of bike-sharing. Y. Wang et al. (2024) aim to evaluate how Shang-
hai’s socioeconomic and geospatial factors influence self-looping trips, which is clearly
different from our purpose.

Beyond DML, the transportation causal toolbox includes Difference-in-Differences
(DiD), Instrumental Variables (IV), Regression Discontinuity (RD), propensity scores,
and Structural Equation Modeling (SEM). DiD compares treated and comparison
units over time (Callaway, Goodman-Bacon, & Sant’Anna, 2024; Stuart et al., 2014).
IV leverages exogenous instruments to isolate variation (Andrews, Stock, & Sun, 2019).
RD exploits sharp assignment cutoffs near a boundary (Imbens & Lemieux, 2008).
Propensity methods balance observed covariates to approximate the effects of ran-
domized comparisons (F. Li, Morgan, & Zaslavsky, 2018; Rosenbaum & Rubin, 1983).
SEM encodes hypothesized pathways and latent constructs (Golob, 2003; Loehlin,
2004). However, our planned, venue- and time-specific events feature high-dimensional
covariates. Under these conditions, DiD’s conditional parallel-trends assumption is
fragile (Bertrand, Duflo, & Mullainathan, 2004). IVs are scarce because venue sched-
ules and local context correlate with demand shifters (MacKay & Miller, 2025). RD
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lacks credible cutoffs (Cattaneo, Idrobo, & Titiunik, 2024). Propensity methods can
underperform without flexible learners and stringent diagnostics (King & Nielsen,
2019). SEM relies on strong structural assumptions and is less robust for localized,
short-horizon shocks (Bollen, 1989). Consequently, we adopt DML, which flexibly
learns nuisance functions, orthogonalizes estimation to high-dimensional confounding,
and yields valid inference for ATE/CATE in this setting.

2.4 Research Gaps

Within this context, the literature reveals consistent methodological and conceptual
gaps. Most importantly, the influence of specific types of special events on shared
micromobility ridership received very little attention (Damant-Sirois & El-Geneidy,
2015; Huang, Xu, Yan, & Zipf, 2019; Rodrigues, Borysov, Ribeiro, & Pereira, 2017).
The limited research that exists tends to focus on a narrow range of event categories,
such as public transit strikes or service disruptions, or merely captures the influ-
ence of major holidays incidentally while investigating other factors. Furthermore,
existing studies often overlook small- to medium-sized city activities, which in fact
account for most events, and they seldom differentiate between event types. More
critically, nearly all current studies on micromobility event impacts rely on correla-
tional designs or simple pre- and post-analyses, which lack the strength to attribute
ridership changes to specific events credibly. These approaches generally fail to disen-
tangle event effects from potential confounders such as extreme weather, changes in
gas prices, or underlying seasonal trends.

This study advances prior research by introducing a robust causal inference frame-
work to systematically evaluate the effects of diverse event categories on shared
micromobility usage in Washington, D.C. Using high-resolution destinations from
dockless e-bikes and e-scooters and applying DML methods, we estimate both ATE
for broad event categories and drill down into event subcategories to uncover nuanced,
category-specific ridership responses. Furthermore, we estimate the CATE of key
contextual factors during events and compare these causal estimates with results
from traditional regression models, highlighting methodological discrepancies and
reinforcing the value of causal identification.

3 Data and Methodology

There are six main steps in our methodology: (1) Data collection and preprocessing;
(2) Event classification; (3) Paired t-test; (4) DML; (5) Key features identification
& correlation analysis; (6) Heterogeneous causal effects within subcategories. Our
analytical framework is presented in Figure 1.

The subsequent subsections detail this framework. Section 3.1 describes the col-
lection and processing of all data and variables. Subsections 3.2 and 3.3 cover event
classification and the creation of treatment/control groups and the preliminary t-test
(RQ1). The core causal analysis using DML to estimate ATEs (RQ2) is outlined in Sub-
section 3.4. Subsection 3.5 presents associational analyses (LightGBM and GLMs) for
RQ3. Finally, the DML framework is extended in Subsection 3.6 to compute CATEs.
These CATEs are used for two purposes: to contrast causal and correlational results in
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Fig. 1: Analytical framework of the six-step approach used to analyze the effect of
special events on shared micromobility in Washington, D.C. Explored three different
categories of special events and compared correlation and causation methods.

Subsection 3.5 (RQ3) and to analyse heterogeneous effects within event subcategories
for RQ4.

3.1 Data Collection and Preprocessing

Here we detail the data and feature construction supporting our analysis. We compile
three event datasets (which we refer to as large, small, and protest) for Washington,
D.C., in 2023-2024 and overlay them with e-scooter/e-bike trips from the company
Lime. Destinations within 500 meters of each venue are counted as the outcome. We
then gather temporal, sociodemographic, and built-environment covariates to provide
context for understanding how events influence shared micromobility.

3.1.1 Three Different Categories of Events

Washington, D.C., the nation’s capital and political centre, is our chosen region of
study. It hosts frequent activities at various spatial and temporal scales, ranging from
small events to large parades and community gatherings (Thompson, 2022). To assess
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the impact of different categories of events on shared micromobility usage, we compiled
three separate event datasets from January 1, 2023, to December 31, 2024: government-
authorised large special events (“large events”), independently organised small-scale
events (“small events”), and government-registered protest events (“protests”). Their
spatial distributions are shown in Figure 2.

Fig. 2: Spatial distribution of the three event categories in Washington, D.C. Fig.
2a shows large events curated by official sources. The original datasets include three
types: sidewalk event (orange), street event (blue), and stationary event (red). Fig. 2b
displays small events published in the Washingtonian. Each small event appears as a
green point. Fig. 2c illustrates protests collected by the Armed Conflict Location &
Event Data Project. Protests are limited to a small number of fixed locations.

First, large events were requested from the Mayor’s Special Events Task Group
(MSETG) under the District’s Homeland Security & Emergency Management Agency
(HSEMA)1. These are events that required public space approval, street closures,
or public safety coordination in Washington, D.C., such as parades, marathons, and
approved cultural gatherings. The raw 2023-2024 large events are originally classified
by venue type as professional street events, professional sidewalk events, or stationary
events. After merging these three categories and excluding events that were canceled
or postponed, the cleaned dataset includes 170 large events. Each event includes com-
plete date and time details (start and end times), event name and description, ward,
advisory neighborhood commission (ANC), and location polygons or lines.

Second, small events were accessed from the Washingtonian calendar website2,
where local organizers post events under one of 20 self-assigned categories (e.g. music,
exhibit, workshop, food, etc.3) After filtering out events overlapping with the large-
event dataset, recurring or multi-day listings, online-only events, duplicates, and those

1https://hsema.dc.gov/page/msetg-special-events-tracking-maps
2https://calendar.washingtonian.com/
3The 20 categories of Washingtonian events: food, class/workshop, reading, comedy, music-classical,

art openings, performance, lecture, music, community, exhibit, family, games, festival, film, drink, dance,
miscellaneous, outdoors, sports.
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lacking complete start/end times or venue coordinates, we retain 2,952 unique small-
scale events for 2023-2024. Each includes detailed metadata, including event name,
identifier, description, venue latitude/longitude, start/end times, ticket price, and
information URL.

Third, protest events were accessed from the Armed Conflict Location & Event
Data Project (ACLED)4, a publicly available, independent global dataset that pro-
vides real-time data and analysis on political violence and protest events. We extracted
all “protest demonstrations” in Washington, D.C., from January 1, 2023, to December
31, 2024. After deleting duplicates, there are 678 protest records. The time precision
of this data set differs from the previous two datasets. ACLED records protests at the
daily level, lacking hour-level detail for start and end times. Additionally, because of
government-imposed venue restrictions, protests in D.C. are limited to a small number
of fixed locations.

The large-event dataset includes fewer events, but they are highly regulated with
comprehensive spatiotemporal details. The small-event dataset captures detailed, self-
organised activities across the city. Although the spatial and temporal accuracy of
protest events is relatively coarse, it does offer essential coverage of civic unrest that
could affect mobility within a city. We select a 500-meter buffer surrounding each event
location to serve as the primary unit of analysis. This distance was chosen to accommo-
date the spatial characteristics of all three event categories. This also accounts for the
actual spatial extent of small-scale events, which are reported as discrete points. How-
ever, the exact location can be anywhere in a building or park. Dockless e-bikes and
e-scooters may be parked irregularly along adjacent streets. Additionally, large event
areas are traffic exclusion zones with street closures and barriers, restricting vehicle
access and requiring riders to park outside the immediate area and walk to the venue
(Batty, DeSyllas, & Duxbury, 2003). The 500-meter buffer ensures a comprehensive
capture of trips across these varied contexts.

3.1.2 Shared Micromobility Trips

Lime is one of the oldest and largest operators licensed by the District Department of
Transportation (DDOT) to provide shared-fleet micromobility in Washington, D.C.,
offering dockless e-scooters and e-bikes since September 2017 (Zou et al., 2020). In
compliance with DDOT’s shared-fleet data policy, Lime publishes anonymised vehi-
cle location data via a public application programming interface (API)5. We collected
e-scooter and e-bike trip records for the same 24-month window as our event data
(January 1, 2023 - December 31, 2024). Then, reconstructed trips using the methods
proposed by McKenzie (2019). As Lime’s scooters and bikes have similar spatiotempo-
ral usage characteristics in the D.C. context (Qiang & McKenzie, 2025), we aggregated
both modes into a unified trip dataset to increase coverage near event venues. Then,
we applied rigorous cleaning: removing duplicate records, trips missing origin or desti-
nation coordinates, those ending outside of the D.C. boundary, and rides with unlikely
durations or speeds. After cleaning, we retained 9,542,094 shared micromobility trips,

4https://acleddata.com/
5https://ddot.dc.gov/page/dockless-api
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each annotated with geographic coordinates and timestamps of origin and destination,
as well as trip duration.

The primary goal of this study is to evaluate whether and how special events attract
or discourage shared micromobility ridership near venues, rather than measuring trips
made by attendees leaving the events. We therefore focus on trip destinations, those
that terminate near, rather than depart from, event locations. Specifically, we created
a 500-meter buffer around every event venue. We counted only those trips whose
destination fell within this zone, treating those counts as dependent variables in our
correlation analyses and outcome measures in causal models.

3.1.3 Covariates

Beyond the events themselves, we incorporated multiple time-sensitive determinants
known to influence shared micromobility ridership. First, weekly gas prices6 were
included, given established evidence that gas price increases correlate with higher
shared micromobility ridership at the city level, particularly for short trips (P. He et al.,
2020). Second, hourly weather conditions (temperature, humidity, precipitation, visi-
bility, and wind speed) were obtained from the Ronald Reagan Washington National
Airport weather station7, reflecting their documented impact on e-bike and e-scooter
usage (Kruijf et al., 2021; Y. Lu, Zhang, & Corcoran, 2024; Noland, 2021). Third,
all 2023–2024 U.S. legal public holidays8 were included because of their observed rid-
ership effects (Palaio, Vo, Maness, Bertini, & Menon, 2021). Finally, the National
Cherry Blossom Festival in D.C. is famous for causing shared micromobility ridership
surges (Younes et al., 2020; Zou et al., 2020). Therefore, in this study, March 18–April
16, 2023, and March 20–April 14, 2024, were specifically singled-out to evaluate the
interaction effects of Cherry Festivals on concurrent events.

Sociodemographic data for Washington, D.C.’s census block groups (CBGs) were
obtained from the U.S. Census Bureau’s 2019-2023 American Community Survey
(ACS) 5-year estimates. We selected features established in prior literature as corre-
lates of shared micromobility usage, including population aged 18–34 (Fitt & Curl,
2019; Laa & Leth, 2020), household income (Delbosc & Thigpen, 2024; Frias-Martinez
et al., 2021), race (Aman et al., 2021), and gender (Reck & Axhausen, 2021), etc.
When an event buffer intersected a single CBG, the CBG’s attributes were assigned to
that event. For buffers overlapping multiple CBGs, we computed a weighted average
of sociodemographic features proportional to the intersecting geographic area.

Built environment features were derived from multiple sources. POI data consist-
ing of 30,355 POI across 10 categorical labels were sourced from Foursquare9. Building
footprints and heights were acquired through the Overture Maps Foundation10, allow-
ing for the calculation of plot ratios. The majority of other infrastructure variables
were collected through the Open Data DC portal11—features such as bicycle racks,

6https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMM EPM0R PTE R10 DPG&f=
W

7https://www.ncei.noaa.gov/access/search/data-search/local-climatological-data-v2?bbox=38.996,-77
.124,38.788,-76.916&pageNum=1

8https://edpm.dc.gov/issuances/legal-public-holidays-2023/
9https://foursquare.com/developer/
10https://docs.overturemaps.org/guides/buildings
11https://opendata.dc.gov/search
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sidewalks, bus stops, metro station entrances in DC, and Capital Bikeshare locations.
Previous studies showed bike facilities, especially those with higher levels of physical
barriers, attract more shared micromobility flows (Jin, Wang, & Sui, 2023). Bike lanes
in this study are a composite feature integrating three datasets: protected bike lanes,
bike trails, and signed bike routes.

Trips and covariates differ according to event category. By way of example, Table 1
provides the operational definitions and descriptive statistics for all variables within
the large event model.

3.2 Event Classification

To better understand how different event categories influence shared micromobility,
we reclassified both large and small events into new, clearer taxonomies. The existing
labels for each were problematic: large events lacked subcategories entirely, while small
events were over-segmented with nuanced, overlapping, or sometimes incorrect tags
(e.g., “Music” vs. “Music—Classical”; “Dance” vs. “Performance” vs. “Comedy”).

We used OpenAI’s ChatGPT (GPT-4o; used on 2025/04/30) to develop a concise
taxonomy for each event category separately. For each category, we separately input
all event names for large and small events, tested various groupings (3-way, 4-way,
5-way, and 6-way), and cross-checked the outputs against event descriptions. After
several rounds of comparison and manual validation by the authors, a separate four-
class scheme proved to be the most succinct and comprehensive for each dataset. This
process allowed us to consolidate the large events into one set of four categories and
the small events into another four. We also explored fully automatic taxonomies using
standard clustering algorithms, but the event dataset is highly heterogeneous, and
the resulting clusters were unstable and mixed conceptually unrelated event types.
Because the aim of the taxonomy is to support interpretable causal analysis rather than
to maximize algorithmic separability, we adopted a concise, semantically meaningful
four-class scheme validated against event descriptions.

Large events dataset is labelled with these four subcategories: festival-related
(cordoned celebrations in fixed public spaces, e.g., Emancipation Day Celebration),
entertainment-related (public or streetscape activities such as the H Street Festival),
sport-related (long-distance biking, running, and walking requiring street closures, e.g.,
the Credit Union Cherry Blossom 5K Run/Walk), and parade (processions spanning
multiple streets, e.g., the National Memorial Day Parade). Although parades usually
occur on festival days, we distinguish the fixed-location festival celebrations from the
moving parade, as the spread of locations varies significantly.

Similarly, we tagged small events as four different subcategories: festival-
related (numerous grassroots micro-festivals, e.g., the Annual DC Clay Festi-
val), entertainment-related (food/drink, comedy, concerts, performances), art-related
(gallery or museum events and tours), and education-related (classes, conferences,
talks/discussions, workshops). Although the first two labels appear in both categories,
they denote clearly different scales and scopes for large versus small events.

After finalising the taxonomy, we assign a subcategory to each single event using
the pre-trained BART MNLI (Large) model (Lewis et al., 2019), which is trained on
theMNLI dataset (Williams, Nangia, & Bowman, 2017). This zero-shot classifier maps
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Table 1: Descriptive statistics of variables in the large event model.

Name Description Mean or
Count

S.D. Min. Max.

Dependent variable / Outcome (within the 500m event buffer)
Trip Count E-bike and e-scooter trip count 239.20 515.57 0 11224
Event features
Event Happen 1 if the event occurs, 0 otherwise. 170 – – –
Event Duration Number of minutes the event lasts. 272.54 311.33 45 3240
Spring 1 if the event is in March–May, else 0. 254 – – –
Summer 1 if the event is in June–August, else 0. 320 – – –
Fall 1 if the event is in September–November, else 0. 391 – – –
Winter 1 if the event is in December–February, else 0. 147 – – –
Weekend 1 if the event is on a weekend, else 0. 804 – – –
Rush Hour 1 if the event starts at 8-10am or 3-7pm, else 0. 556 – – –
Temporal features
Temperature Dry-bulb temperature at the event start time (°C) 19.14 8.81 -6.7 36.7
Humidity Relative humidity at the event start time (%) 57.69 19.01 18 96
Precipitation Precipitation at the event start time (mm) 0.19 1.82 0 32.5
Wind Speed Wind speed at event start time (mph) 4.01 2.29 0 13.4
Gas Price Gasoline price at event start time ($/gallon) 3.52 0.19 3.12 3.88
Cherry 1 if the event occurs during the cherry blossom

festival, 0 otherwise.
122 – – –

Holiday 1 if the event occurs on a holiday, 0 otherwise. 185 – – –
Built environment features (within the 500m event buffer)
Dining&Drinking
POI

Number of dining and drinking POIs 184.19 156.25 2 1151

Art POI Number of art and entertainment POIs 104.28 99.52 0 470
Transportation POI Number of transportation POIs 105.14 96.04 2 808
Government POI Number of community and government POIs 150.25 155.34 4 1124
Business POI Number of business and professional services POIs 259.68 217.98 0 1353
Health POI Number of health and medicine POIs 20.38 28.29 0 252
Retail POI Number of retail POIs 67.94 60.03 0 436
Sport POI Number of sports and recreation POIs 33.84 33.78 0 323
Bike Rack Number of bike rack 112.66 106.07 1 1010
Bike Lane Length of bike lane (km) 9.60 10.57 0.05 73.93
Sidewalk Area Sidewalk area (100m*100m) 27.61 24.44 1.69 184.02
Area of Water Waterbody area (100m*100m) 24.60 23.62 0 83.27
Plot Ratio The ratio of the gross floor area of buildings and the

total buildable area
3.91 1.89 1.35 7.83

House Unit Number of house unit 515.73 139.56 181 821
Bus Station Number of bus station 59.95 40.63 0 393
Bus Station Distance Distance from event to nearest bus station (100m) 1.12 1.14 0.11 8.57
Metro Distance Distance from event to nearest metro station (100m) 6.07 7.02 0.29 36.85
Metro Entrance Number of metro station entrances 7.52 7.23 0 25
CB Station Number of Capital Bikeshare stations 12.62 10.71 0 92
Socio-demographic features (of CBGs that intersect the event buffer)
Female Average number of females 415.45 187.02 90 958
Male Average number of males 404.65 141.46 165.28 732
White Average White population 442.60 238.16 38 969
Black Average Black population 223.07 284.96 29.14 1091
Asian Average Asian population 56.48 26.84 0 196
Age 18-34 Average population aged between 18-34 312.32 128.21 126 798
Labor Force Average labor force 550.47 186.79 184 1027
House income Average household income (1000 $/year) 137.53 29.92 57.10 222.14
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free text to candidate labels without requiring task-specific training. For each event,
we concatenate its name and description and then score this combined text against
the four candidate subcategories. We assign the label with the highest score. If the top
score is below 0.5 (out of 1), we enrich the input with content from the event’s web page
and rescore it. If confidence remains low after this addition, we determine the label
through the authors’ manual assessment. With this three-stage pipeline, every large
and small event record was assigned a single, semantically appropriate subcategory,
while the protest dataset retained a single class.

3.3 Treatment and Control Groups

To measure the impact of events on shared micromobility ridership, we first define the
treatment group, which naturally forms whenever an event takes place. Each event
generates a clear “treatment period,” during which the number of trip destinations is
recorded. Once the treatment group is identified, we construct a corresponding control
group to represent what ridership would have looked like under comparable conditions
without an event. For each event, we select trips from the same location, the same time
window (matching the event’s start and end times), and the same day of the week,
but drawn from the four weeks preceding and the four weeks following the event date.
In theory, this yields up to eight matched control observations per event. However,
some control candidates may themselves be influenced by other nearby events. To
prevent contamination, we systematically screened all control windows and removed
any that overlapped with another event in both time and space. In particular, any
control observation containing a concurrent event within a 3 km buffer of the focal
event was excluded.

Empirically, the four-week window before and after a known event ensures that
nearly all events have at least one uncontaminated control observation. This method
is highly effective for large events and protests. However, small events tend to exhibit
excessive spatial and temporal overlaps, resulting in approximately half of the treat-
ment group being unable to identify a suitable control observation according to the
established criteria. In total, after combining treatment and control observations, our
dataset includes 1,112 large event observations (163 out of 170 treatments are paired),
7,166 small event observations (1480 of 2,952 paired), and 2,952 protest event obser-
vations (674 of 678 paired). This approach follows established practices in event-study
causal inference design (Callaway & Sant’Anna, 2021; L. Sun & Abraham, 2021), where
treatment and control periods are compared within units, and overlapping or con-
founding events are carefully removed to prevent contamination of the control group
(Borusyak, Jaravel, & Spiess, 2024).

As a preliminary diagnostic, we then conducted paired t-tests within our 500-meter
event buffers. We compared trip volumes during event hours to those during matched
non-event control windows for each of the three event categories. This initial analysis
provides a foundational understanding of the statistical associations before proceeding
with more complex causal modeling.
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3.4 Causal Analysis: Double Machine Learning

To quantify how each event category causally changes shared micromobility trip vol-
umes, we employ the double machine learning (DML) algorithm. The core innovation
of DML is its three-stage orthogonalization procedure (Chernozhukov et al., 2018).
Stage 1 uses ML to capture the effect of covariates on both treatment and outcome.
Stage 2 computes the residual outcome and the residual treatment. Stage 3 runs a
regression using residual treatment to predict residual outcome, thereby obtaining the
causal effect.

Compared with conventional approaches, such as propensity score matching, fixed-
form GLMs, or difference-in-differences, DML is less sensitive to model misspecification
in the covariate process. It is better suited when many controls and interactions
are required. Because traffic demand arises from complex, interacting factors (e.g.,
weather, time, and built environment). DML enables us to capture these nonlin-
ear interactions with flexible ML while still delivering valid causal estimates via
orthogonalization and cross-fitting.

In detail, each observation is Wi = (Yi, Di, Xi), where Yi is the trip count within
a specified time–location interval (outcome), Di is a binary indicator for whether an
event of a given category (or subcategory) occurs in that interval (treatment), and
Xi is a vector of concurrent weather and temporal conditions together with built-
environment and sociodemographic features (covariates). The relation between them
can be formulated as follows:

Y = θD + g(X) + ζ (1)

where g(X) is a function capturing the effect of covariates on the outcome, θ is the
causal effect parameter we want to estimate for treatment D, and ζ is a residual term
which represents effects from other unobserved variables. In general, covariates X also
has an effect on the treatment D:

D = m(X) + V (2)

where m(X) is the propensity for the event to occur given the covariates and V is
another residual term satisfying E[V | X] = 0. Because X influences both Y and D,
simple event–no-event comparisons are confounded. DML addresses this problem by
first obtaining the estimators ĝ(X) and m̂(X) by machine learning models (here we
use random forests), which can be used to form the residual outcome Y − ĝ(X) and
the residual treatment D − m̂(X). These two residuals represent the components of
the outcome and treatment that are unaffected by covariates X, so a linear regression
on these two residuals yields an estimate for the causal effect parameter:

θ̂ =

∑
i (Di − m̂i (Xi)) (Yi − ĝi (Xi))∑

i (Di − m̂i (Xi))
2 (3)

To prevent overfitting, we use grouped cross-fitting: the sample is split into K folds
at the event level. Each event and all of its matched “non-event” control group share
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a group ID and are assigned to the same fold. This ensures each fold includes both
the event and its corresponding non-event control group. Then, 80% of the folds are
allocated for training and 20% for testing. This proposed method to estimate θ̂ allows
us to get the average treatment effect (ATE) of event occurrence. To address RQ2, the
causal effect of an event happening on the trip volumes is captured by ATE, which is
defined for discrete treatments:

ATE = E[Y (D = 1)− Y (D = 0)] (4)

3.5 Key Features & Correlation Analysis

This section outlines the key relationships between important predictors and shared
micromobility ridership using two complementary methods. First, we use a non-
parametric machine learning approach to identify the most influential features and
capture complex nonlinear patterns. Second, we apply a traditional regression model
to produce interpretable, though correlational, parameter estimates. Together, these
analyses address RQ3 and set a baseline for comparison with our causal estimates.

3.5.1 LightGBM & SHAP

To identify key predictors of shared micromobility trip volumes and visualize nonlinear
and interaction effects before our causal analysis, we use a gradient-boosted decision-
tree model (Friedman, 2001), specifically LightGBM (Ke et al., 2017). The decision
tree ensemble is constructed iteratively to minimize the mean-squared-error loss:

L(f) = 1

N

N∑
i=1

[yi − f (xi)]
2

(5)

where yi is the observed shared micromobility trip count for sample i and f(xi) is
the model’s prediction. Starting from a constant baseline, we grow the ensemble itera-
tively by adding shallow trees to correct the remaining errors. In each round, the new
tree is trained on the residuals ri, i.e. the differences between observed volumes and
the current predictions. Specifically, the m-th tree Tm is chosen to approximate the
residual:

Tm = argmin
T

∑
i

[ri − T (xi)]
2
, (6)

Repeating this residual-fitting loop yields a flexible, nonlinear model capable of
accurately estimating shared micromobility trip volumes from the input features. A
further advantage of tree ensembles is their explanatory power: each prediction can be
decomposed exactly with SHAP ’s TreeExplainer (Lundberg et al., 2020). We obtain
per-feature contributions ϕj(x) whose aggregated magnitudes directly address RQ1

by ranking the variables most strongly associated with trip-volume changes. TreeEx-
plainer assigns each observation a baseline term ϕ0 and per-feature Shapley values ϕj

satisfying:

f(x) = ϕ0 +
∑
j

ϕj(x), (7)
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so that ϕj(x) represents the marginal contribution of feature j for that prediction.
Gradient-boosted decision trees automatically capture complex nonlinearities and fea-
ture interactions, and SHAP values ϕj(x) quantify each feature’s context-specific
contribution. This yields a more accurate and arguably richer ranking of importance
than that of a standard linear regression model.

3.5.2 Negative-binomial GLM

After identifying the top 20 features that influence ridership during events, we aimed
to compare the estimated effects of these features from a traditional associative
model with those derived from a causal inference framework. To achieve this, we esti-
mated separate negative-binomial GLMs for large and small event categories during
event periods12. The negative-binomial distribution was chosen because the trip count
data exhibited over-dispersion (variance > mean). A standard Poisson model would
have underestimated uncertainty and overstated statistical significance, whereas the
negative-binomial specification effectively accounts for this extra dispersion, providing
more reliable estimates (Mehzabin Tuli, Mitra, & Crews, 2021).

The set of predictors for each model was refined from the top 20 SHAP-ranked
features. To mitigate multicollinearity, we calculated the Variance Inflation Factor
(VIF) and iteratively removed the variable with the highest VIF until all retained
predictors had a VIF of less than 10. The resulting negative-binomial GLMs were
fitted with shared micromobility trip counts as the dependent variable.

3.6 Conditional Average Treatment Effect

DML also allows us to get the CATEs of the other features in covariates for either event
category or event subcategory. For RQ3 (event category) and RQ4 (event subcategory),
we study how significant predictors (continuous and discrete) influence the outcome,
conditioning on events occurring. This is represented by CATE:

CATE(x) =

E[Y (D = 1)− Y (D = 0) | X = 1] , discrete D,

∂

∂d
E[Y (D = d) | X = 1] , continuous D,

(8)

Notice that the variables are now labeled differently here: X = 1 represents an event
happening, and D represents a particular significant variable.

We estimate the CATE for each independent variable retained in the GLMs for
RQ3. This two-step process enabled a direct comparison between the associational
parameters of the negative-binomial GLMs and the causal estimates from the DML
framework for the same set of predictors.

12We excluded the protest event category from this analysis because the DML results indicated no
significant causal effect of protests on shared micromobility ridership.
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4 Results

4.1 Correlation Between Event Occurrence and
Shared-micromobility Volumes

The results of the paired t-tests, shown in Table 2, reveal significant associations
between special events and shared micromobility trip volumes, with notable differences
across event categories and subcategories. Overall, both small and large events had a
statistically significant positive association with increased micromobility usage. The
mean increase for small events was 5.13 trips (p<0.001), while the impact for large
events was much greater, with an average rise of 128.88 trips (p<0.001). In contrast,
protests were associated with a statistically significant decrease in trip volumes, with
an average decrease of 5.23 trips (p = 0.0057).

Analysis of subcategories uncovered additional details. Among small events,
art–related events showed no significant association with the impact on trip volumes
(p = 0.45). However, the education, entertainment, and festival subcategories all dis-
played statistically significant positive effects, with mean increases ranging from 5.08
to 6.95 trips. For large events, all subcategories exhibited significant positive effects.
While sports events saw a more moderate mean increase of 59.79 trips, the impacts for
parade, entertainment, and festival events were notably larger, with mean increases
from 145.21 to 200.84 trips.

Table 2: The results of paired t-tests for three different event categories (in bold)
and their subcategories.

Event category & subcategory N Pairs Mean Event Mean Control Mean Difference

Small event 1480 38.7979 33.6714 5.1265***
Art–related 290 37.4758 36.1224 1.3534
Education–related 426 32.9014 27.8239 5.0774***
Entertainment–related 441 42.1836 35.8665 6.3171***
Festival–related 323 43.1393 36.1860 6.9532***

Large event 163 382.6993 253.8147 128.8845***
Sport–related 51 231.6470 171.8561 59.7909*
Parade 32 325.2812 180.0727 145.2085*
Entertainment–related 25 591.2800 390.4366 200.8433**
Festival–related 55 461.3636 310.6164 150.7472***

Protest 674 77.4213 82.6534 −5.2321**

Note: †p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

4.2 Causation of Event Occurrence on Shared-micromobility
Volumes

The causal estimates derived from the DML model provide a refined understanding
of the impact of special events on shared micromobility usage (Table 3). The analysis
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confirms a significant positive causal effect for both small events (ATE = 8.98, p <
0.001) and large events (ATE = 231.18, p = 0.002). In contrast to the correlational
results, the protest event category exhibits no statistically significant causal effect (p =
0.52). At the subcategory level, the art-related subcategory again shows no effect, while
the causal estimates for entertainment-related and especially festival-related events are
significantly higher than their correlational means. For large events, the sport-related
subcategory shows no significant causal effect, while the causal estimates for parade,
entertainment-related, and festival-related events are all positive and significant, with
the latter two showing notably larger effect sizes (ATE = 487.57 and 690.39).

Table 3: The results of DML for three different event categories (in bold)
and their subcategories.

Event category & subcategory ATEs SE CI 2.5% CI 97.5%

Small event 8.9845*** 1.0479 6.9306 11.0384
Art–related -1.0295 4.0090 -8.8872 6.8280
Education–related 12.9922*** 1.4521 10.1461 15.8383
Entertainment–related 7.8197*** 1.6062 4.6715 10.9679
Festival–related 46.5940*** 11.7254 23.6125 69.5755

Large event 231.1790** 75.6614 82.8854 379.4726
Sport–related 98.4399 68.9392 -36.6785 233.5583
Parade 127.0652* 61.7028 6.1299 248.0005
Entertainment–related 487.5749* 248.2489 1.0159 974.1340
Festival–related 690.3891** 241.7065 216.6529 1164.1253

Protest −2.5929 4.0639 −10.5580 5.3722

Note: “SE” denotes the standard error. †p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

4.3 Key Variables for Shared-micromobility When Events
Take Place

Figure 3 presents the top 20 predictors of micromobility trip volumes during small
and large events, as identified by SHAP value analysis. While the specific rankings
differ, there is considerable overlap in the influential variables across the two event
categories, indicating shared underlying factors that drive demand. Key predictors
for both models include Event Duration, Temperature, Transportation POI, Dining
& Drink POI, Bike Rack, etc. The combined set of top predictors, along with event
features, comprised 32 variables for subsequent causal and correlational modeling,
excluding protests due to their previously established lack of causal impact.

Table 4 presents the results of the DML and negative-binomial GLM analyses,
revealing critical distinctions between causal drivers and correlational factors. For
both small and large events, the DML model demonstrates that the most substantial
causal effects on micromobility trips are attributed to event and temporal features.
The single strongest positive predictor is Event Duration, with a large and highly
significant CATE (Small: 17.909, p<0.001; Large: 50.776, p<0.001). Seasonal effects
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(a) SHAP value for small events (b) SHAP value for large events

Fig. 3: SHAP summary plots for the LightGBM model predicting shared micromo-
bility ridership during events. Each point represents a single event observation (Event
Happen = 1). Features are ordered on the Y-axis by their impact on the model’s out-
put. On the X-axis, a positive SHAP value increases the predicted trip volume, while
a negative value decreases it. The color represents the feature’s raw value from low
(blue) to high (red). Purple indicates intermediate values.

are also pronounced. Summer (CATESmall = 14.583; CATELarge = 343.155) and Fall
(CATESmall = 11.011) exhibit strong positive causal effects, whereas Winter has a
high negative causal effect (CATESmall = −21.287; CATELarge = −459.738). Among
temporal indicators, Gas Price (CATESmall = −27.075; CATELarge = −677.280) and
Holiday (CATELarge = −226.784) exerts a significant negative causal pressure on
ridership. One explanation for this is that when a large event coincides with a holiday,
people may choose to visit alternative destinations (e.g., traveling out of town for
vacation), thereby reducing demand for the specific event and generating a negative
causal effect on its usage during large events. In contrast, most built environment
and socio-demographic features, although sometimes statistically significant, exhibit
CATEs of negligible magnitude, indicating their causal effect on trip volumes during
events is minimal.

Conversely, the negative-binomial GLM results, which measure association, tell a
different story. While it agrees that Event Duration (CoefSmall = 0.303, CoefLarge =
0.080) and Temperature (CoefSmall = 0.042; CoefLarge = 0.079) are strong positive
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Table 4: The results of DML and negative-binomial GLM for small and large event categories.

DML Negative-binomial GLM

Variables
Small Event Large Event Small Event Large Event

CATEs SE CATEs SE Coefficients SE Coefficients SE

Event features
Event Duration 17.909*** 1.519 50.776*** 8.879 0.303*** 0.018 0.080*** 0.018
Spring −7.678*** 0.790 −91.735 83.462 – – – –
Summer 14.583*** 0.864 343.155** 145.494 −0.085 0.100 −0.159 0.168
Fall 11.011*** 0.750 158.548 127.581 0.172* 0.076 0.453† 0.130
Winter −21.287*** 0.844 −459.738*** 81.614 −0.153 0.106 −0.097 0.184
Weekend 4.216* 2.203 12.003 323.513 0.120* 0.064 1.021* 0.453
Rush Hour −0.327 3.271 215.553 358.1426 0.160** 0.067 −0.301 0.259
Temporal features
Temperature 1.246*** 0.208 42.667† 26.698 0.042*** 0.006 0.079*** 0.024
Humidity −0.168*** 0.038 −5.348† 3.270 −0.006*** 0.002 −0.014* 0.007
Precipitation −3.823** 2.249 73.639* 43.117 −0.192** 0.067 0.262 0.172
Wind Speed −0.005 0.336 −10.294 16.874 −0.008 0.013 −0.022 0.063
Gas Price −27.075*** 4.418 −677.280† 416.709 −0.565*** 0.152 −1.112* 0.664
Holiday −4.689 4.418 −226.784** 92.627 0.105 0.250 −1.060* 0.579
Built environment features
Dining&Drink POI 0.335* 0.172 0.410 1.601 0.006*** 0.001 – –
Landmark POI −0.871 0.697 −3.295 3.137 −0.005 0.005 – –
Art POI −0.432 0.732 −1.666 1.316 0.003* 0.002 -0.002 0.003
Transportation POI 0.039 0.153 0.840 1.169 – – – –
Government POI 0.056 0.065 −0.037 0.682 −0.0006 0.001 −0.001 0.001
Health POI −0.428 0.130 −1.586 2.075 −0.005*** 0.001 −0.004 0.004
Business POI −0.054 0.099 0.700 1.097 – – – –
Sport POI 0.234 0.291 −2.149 3.206 0.003 0.004 – –
Retail POI 0.252 0.257 0.507 2.188 0.005*** 0.001 0.002 0.005
Bike Rack 0.173 0.121 −0.127 0.866 0.002* 0.001 0.001 0.003
Bike Lane 1.334 1.383 −0.434 10.688 0.100*** 0.023 0.047† 0.031
Sidewalk Area 2.842 1.833 −18.413* 9.199 0.129*** 0.020 – –
Plot Ratio 4.974 5.939 −44.556 75.545 −0.155*** 0.029 −0.210* 0.111
Bus Station −0.184 0.485 −2.490† 1.512 −0.002 0.004 0.001 0.008
Metro Distance 1.166* 0.708 −21.837 40.598 −0.005 0.008 −0.120*** 0.024
CB Station 0.747 3.354 −15.867* 8.250 0.061*** 0.020 – –
Socio-demographic features
Female −0.079 0.066 −4.193* 2.209 −0.002*** 0.000 – –
Black −0.004 0.013 0.323 1.108 0.000 0.000 −0.003*** 0.001
Age 18-34 0.024 0.048 −3.849 2.660 0.002*** 0.000 0.0007 0.001
Log-likelihood - - −13579 −1102
Pseudo R-squared - - 0.3989 0.5931

Note: “SE” denotes the standard error. †p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

correlates and Gas Price (CoefSmall = −0.565, CoefLarge = −1.112) and Humid-
ity (CoefSmall = −0.006, CoefLarge = −0.014) are negative correlates, it also flags
a much wider array of built-environment and socio-demographic variables as signifi-
cantly related to trip volumes. Features such as Dining&Drink POI, Retail POI, Bike
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Lane, Sidewalk Area, CB Station, Female, and Age 18-34 all show significant coeffi-
cients in the GLM for small events, despite their causal effects being insignificant or
trivial.

To assess the robustness of our estimated treatment effects, we further examine
the predictive accuracy of the nuisance functions underlying the DML framework. The
quality of nuisance models, such as the propensity and outcome models, is crucial
because well-fitting models improve orthogonalization and yield more stable causal
estimates. For each event category, we report the area under the receiver operating
characteristic curve (ROC-AUC) for the propensity model and the coefficient of deter-
mination (R2) for the outcome model. The results show Protest (ROC-AUC = 0.6739,
R2=0.7917), Small event (ROC-AUC = 0.8187, R2=0.6737), and Large event (ROC-
AUC = 0.5845, R2=0.2842). These values indicate that the models for protests and
small events achieve reasonable separation and high outcome fit, suggesting reliable
nuisance estimation and robust causal inference. In contrast, the weaker performance
for large events reflects their greater heterogeneity and unpredictability. Overall, the
nuisance models perform adequately for causal identification, lending confidence to
the robustness of our estimated treatment effects.

4.4 Key Variables’ CATEs for Subcategory When Events Take
Place

Figure 4 shows the most influential predictors of micromobility demand within each
event subcategory based on SHAP analysis. LightGBM prediction metrics are included
in the appendix. Many of the same variables are shared across small subcategories,
like Event Duration and Temperature. In contrast, large subcategories display notably
diverse importance profiles. For large entertainment and large festival events, only a
few features carry significant signals, and many variables have SHAP values of zero,
indicating no contribution under the fitted model. As in the previous subsection, we
compare important variables across subcategories within the same event category and
estimate DML models. However, for large-event specifications, variables with SHAP
= 0 will not be included unless they are part of parade events. Finally, large sports
events and small art events are excluded due to a lack of causal impact.

Tables 5 and 6 display the CATEs for these subcategories, measuring the causal
impact of each variable during specific event categories. For large event subcate-
gories (Table 5), the causal drivers of demand vary significantly across subcategories.
Event Duration remains a strong positive predictor for parade (CATE = 135.094,
p<0.05) and festival (CATE = 59.97, p<0.001) events, but is insignificant for enter-
tainment events. Seasonal effects are strong but vary: Summer causes significant
growth in trips during parade (CATE = 357.628, p<0.001) and entertainment (CATE
= 495.294, p<0.05) events, while Winter significantly reduces trips for all large events
(large entertainment events are not even held during winter). Importantly, the built
environment shows a much more substantial causal impact for each large subcate-
gory event than in the overall analysis. For parades, features such as CB Station
(CATE = 90.287, p<0.001), Bike Lane (CATE = 53.763, p<0.05), and Sidewalk Area
(CATE = 31.339, p<0.05) have notable positive effects. A similar pattern appears for
entertainment events (Art POI, Sidewalk Area, CB Station, Bike Lane) and festival
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(a) Large parade (b) Large entertainment (c) Large festival

(d) Small education (e) Small entertainment (f) Small festival

Fig. 4: SHAP values for small and large event subcategories. Figs. 4a, 4b, and 4c
present three large-event subcategories, while Figs. 4d, 4e, and 4f display three small-
event subcategories. For each plot, every point represents a single event observation
(Event Happen = 1). Features are ordered on the Y-axis by their impact on the model’s
output. On the X-axis, a positive SHAP value increases the predicted trip volume,
while a negative value decreases it. The color represents the feature’s raw value from
low (blue) to high (red). Purple indicates intermediate values.

events (Bike Lane, Sidewalk Area), although the specific significant variables differ.
Socio-demographic variables also exhibit occasional yet significant impacts on large
entertainment and festival events.

For small events, the features are remarkably consistent across education, enter-
tainment, and festival subcategories (Table 6). Event duration is a uniformly strong

23



Table 5: The results of DML for the three large event subcategories.

Variables
Parade Entertainment-related Festival-related

CATE SE CATE SE CATE SE

Event features
Event Duration 135.094* 72.731 3.973 10.155 59.970*** 9.584
Spring −56.309 108.991 473.559 1063.844 −218.937 290.291
Summer 357.628*** 97.921 495.294* 257.426 7.578 283.469
Fall −57.499 122.691 −252.984 169.459 106.120 338.244
Winter −326.241*** 97.914 – – −614.666** 212.342
Weekend 114.727 130.777 −8.689 367.610 179.708 489.215
Rush Hour 153.436 174.455 −335.745 220.137 80.402 348.054
Temporal features
Temperature 19.013*** 5.909 26.712 19.090 62.431 50.875
Humidity −0.189 1.807 0.001 4.898 −3.212 5.514
Precipitation 1.611 2.379 2.450 1.640 −10.407 6.850
Wind Speed −47.314 49.109 −1.273 23.586 75.635 83.070
Gas Price −91.423 155.865 370.819 363.739 −935.383 698.950
Built environment features
Dining&Drink POI 5.692* 1.123 0.733 1.883 −1.797 1.644
Landmark POI 12.516* 5.609 2.774 9.415 −51.692 65.061
Art POI 7.360** 2.942 14.583*** 4.411 −1.019 1.787
Sport POI 12.078* 6.718 0.553 8.032 4.809 14.755
Government POI 6.344* 2.928 9.122† 5.619 0.793 2.525
Health POI 15.486** 5.937 13.305† 7.822 −23.760* 13.278
Bike Rack 3.950*** 1.204 5.324* 2.317 4.301 3.318
Bike Lane 52.763* 30.100 39.775† 27.537 218.517† 144.769
Sidewalk Area 31.339* 17.390 66.388† 36.220 170.666** 68.244
Area of Water 0.116 3.865 1.864 11.168 0.379 4.485
House Unit 3.373† 2.146 −0.803 1.698 −10.816 7.637
Bus Station Distance 0.317 0.462 0.873 2.331 −3.236 2.918
Metro Distance 0.7877 6.290 −21.023*** 3.005 −29.935 60.362
CB Station 90.287*** 14.659 58.289† 38.469 −78.291 106.174
Socio-demographic characteristics
Female −0.267 0.367 −0.734 0.927 −7.717 6.5455
Male 0.740 1.363 −1.219 1.177 32.735** 12.195
White 0.297 0.368 −2.807* 1.106 −2.406 2.420
Age 18-34 −0.906 0.459 −0.303 1.728 −0.745 2.329
Labor Force 2.300 2.068 −6.335* 2.757 12.666† 8.651
House Income 2.509 2.221 −7.805 5.564 25.902 30.010

Note: “SE” denotes the standard error. †p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Large entertainment events do not have samples in winter.

positive predictor for all three subcategories (CATE from 14.168 to 21.848, all
p<0.001). Seasonal patterns are also consistent: Summer and fall lead to increases in
shared micromobility ridership, while winter and spring see decreases. Temperature
positively influences demand. Humidity and gas prices have a negative impact across
all subcategories. Conversely, the built environment and socio-demographic factors
show almost no significant causal effects on small event demand. Only a few variables,
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Table 6: The results of DML for the three small event subcategories.

Variables
Education-related Entertainment-related Festival-related

CATE SE CATE SE CATE SE

Event features
Event Duration 18.268*** 1.812 14.168*** 2.202 21.848*** 3.363
Spring −5.524*** 1.365 −8.388*** 1.468 −17.290*** 3.045
Summer 12.846*** 1.731 18.750*** 1.367 10.359*** 3.518
Fall 12.123*** 1.240 7.091*** 1.293 20.023*** 3.238
Winter −16.880*** 1.229 −20.557*** 1.413 −29.304*** 3.473
Weekend 1.168 4.586 3.622 9.003 −0.916 8.251
Rush Hour −3.471 6.322 −2.240 5.378 −2.550 8.235
Temporal features
Temperature 0.647* 0.315 1.337*** 0.279 1.683** 0.574
Humidity −0.174** 0.058 −0.076 0.067 −0.499*** 0.135
Precipitation 0.744 4.034 −3.173 2.114 −13.339* 6.989
Wind Speed −0.510 0.446 0.169 0.387 1.076 1.618
Gas Price −14.365* 6.960 −28.068** 9.412 −37.724* 17.969
Built environment features
Dining&Drink POI 0.333 0.276 0.073 0.159 0.460* 0.219
Landmark POI 0.775 0.611 −0.101 0.473 −0.708 0.881
Transportation POI 0.040 0.243 0.222 0.141 0.228 0.420
Sport POI 0.991 0.690 −0.149 0.400 0.100 0.594
Retail POI −0.501 0.533 −0.031 0.105 −0.372 0.456
Business POI 0.016 0.120 0.257** 0.091 −0.244 0.199
Government POI 0.172 0.188 0.0517 0.045 0.231† 0.146
Bike Rack 0.203 0.187 −0.119 0.136 0.259 0.187
Bike Lane 4.243 1.974 2.170 1.512 7.920* 4.023
Sidewalk Area −8.250 5.758 2.246 1.484 3.685 3.961
Plot Ratio 4.605 12.710 −3.850 6.185 8.556 7.773
House Unit 0.130 0.230 0.001 0.085 0.255 0.224
Area of Water 0.202 0.268 0.066 0.123 0.210† 0.127
Bus Station Distance −0.012 0.047 −0.001 0.022 0.070 0.051
CB Station −0.592 2.659 −2.077 2.367 1.256 3.018
Socio-demographic characteristics
Female −0.049 0.145 −0.014 0.033 −0.091 0.039
White −0.002 0.033 −0.027† 0.016 0.075 0.066
Age 18-34 0.041 0.050 0.020 0.019 0.001 0.041
Labor Force −0.051 0.077 0.017 0.032 −0.100 0.079
House Income 0.302* 0.133 0.055 0.094 −0.279† 0.159

Note: “SE” denotes the standard error. †p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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such as Bike Lane for festivals (CATE = 7.92, p<0.05), Business POI for entertain-
ment events (CATE = 0.257, p<0.01), and House Income for education events (CATE
= 0.302, p<0.05) have weak effects, suggesting demand during smaller events is mainly
influenced by the event itself and weather, not built environment or demographic
features.

5 Discussion

5.1 Causal vs. Correlational Effects of Event Categories on
Shared Micromobility Demand

Our findings demonstrate that special events have a significant impact on shared
micromobility usage, particularly during large events. Both our causal (DML) and
correlational (paired t-tests) analyses reveal that the impact of a large event is over
25 times greater than that of a small one. Although the correlational analysis found
a positive association between small/large events and shared micromobility, it con-
sistently underestimated their impact. It gave inconsistent results for protest event
categories compared to the causal analysis, complicating interpretation.

The use case of protest events exemplifies the critical distinction between correla-
tion and causation. The observed negative correlation was likely not causal, but rather
a result of spatial confounding. Since the protests were limited to specific government-
approved locations, which are often in areas with lower population density and less
micromobility infrastructure and demand. The decrease in trips is likely due to the
location rather than the protest itself. This illustrates how correlational methods can
mistakenly suggest a causal relationship when one does not exist.

For events with genuine causal effects, the correlational approach significantly
underestimated their actual impact. This underestimation was most extreme for
festival-related events, where the causal estimate was four to seven times (four for
large festivals, seven for small festivals) greater than the correlational mean differ-
ence. This indicates that simple before-and-after or control-day comparisons fail to
account for confounding variables, leading to a substantial undervaluation of these
events’ ability to generate ridership. Similarly, the significant correlational effect for
large sports events vanished under causal scrutiny, suggesting that other factors drove
the initial association. Moreover, the associational model (negative-binomial GLM)
indicates a significant role for many built environment and socio-demographic fea-
tures; however, DML reveals that these correlations are likely confounded and do not
represent a genuine causal relationship. This is likely due to co-location, omitted vari-
ables, and selection bias. These results collectively argue for the adoption of causal
inference frameworks in urban mobility studies, enabling the movement beyond mere
association and an accurate quantification of the proper drivers of demand.

5.2 Heterogeneous Causal Mechanisms Across Event
Subcategories

Examining event subcategories uncovers a split in how shared micromobility demand
is driven during events. Across all events, the duration and seasonality (such as the
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positive effects of Summer and Fall and the negative impacts of Winter) stand out as
the most consistent and influential causal factors. At the same time, Gas Prices are
the most potent negative predictor. Interestingly, temporal markers like Weekend and
Rush Hour have almost no apparent causal effect, indicating that the “special” nature
of an event outweighs short-term daily travel patterns.

The role of the built environment, however, varies greatly depending on the scale
of the event. For large events (e.g., parades, festivals, major entertainment events),
shared micromobility demand is driven by the interaction between the event, temporal
factors, and urban infrastructure. Features such as Sidewalk Area, Bike Lane, and
dense POI are essential for supporting and increasing trip volumes during large events.
Especially the first two (Sidewalk Area and Bike Lane) have a very high causal impact,
and Bike Lane also has strong effects on small festivals. This shows that cities can take
a proactive approach to managing mobility during large events and enhance economic
benefits through strategic investments in mobility infrastructure within designated
event zones. Practically, for planners, venues hosting or managing special events that
want to encourage a shift from cars to micromobility should expand and connect
sidewalk capacity along key access routes and establish continuous, safe bike-lane
networks linked to transit hubs. These measures would be more effective than changing
the station distance or transit network.

Conversely, for small events, demand is primarily driven by the event itself and
immediate temporal factors. The surrounding built environment has little to no
marginal causal effect. This shows that small events create a more intrinsic, localised
demand that does not rely heavily on the existing urban environment. Therefore,
strategies to promote micromobility for small events should prioritise operational
incentives, like dynamic pricing promotions and ensuring vehicle availability, rather
than capital-intensive infrastructure projects, which are less effective at this scale.
This variability requires event-specific mobility policies rather than one-size-fits-all
solutions.

5.3 The Counterintuitive Causal Effect of Gas Prices

Our study uncovered a counterintuitive yet important finding: rising gas prices have
a significant negative causal effect on shared micromobility use during events. This
seems to contradict established research, which generally shows that higher gas prices
increase overall micromobility ridership in the long run by discouraging private car
use (Younes et al., 2020). However, Berezvai, Basile, Kálecz-Simon, and Bakó (2024)
observed that removing the gas price cap increased bikeshare usage primarily in sub-
urban areas, with a decrease also recorded in some localities. Our results support this
finding.

We propose two mechanisms for this phenomenon. First, especially for small events,
where attendance is optional, an increase in gas prices can discourage attendance,
particularly for those who live farther away and rely on their cars. Instead of switch-
ing to micromobility for the entire trip, potential attendees may simply choose not to
attend, which eliminates the possibility of a “first-and-last-mile” micromobility trip
originating from a parking spot (Badia & Jenelius, 2023). Second, the positive impact
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of gas prices on shared micromobility adoption is likely subject to a time lag. Behav-
ioral shifts towards alternative transportation modes usually happen gradually over
weeks or months, rather than immediately on the day of a price increase. Thus, the
immediate short-term effect observed during an event is a reduction in overall travel
demand that has not yet been replaced by micromobility. This highlights the impor-
tance of temporal granularity in analysis; a long-term positive correlation can hide
short-term negative causal effects.

5.4 Limitations and Future Work

This study has several limitations that offer opportunities for future research. First,
using a uniform 500-meter buffer for all event categories may not fully capture each
event’s spatial influence. Large events, like parades or festivals, likely have a broader
geographic impact and might need a larger or more adaptable buffer to include all
affected trips. Conversely, smaller events could be adequately covered with a smaller
radius. However, a straightforward spatial buffer, using 500-meter zones centered
around venues, ensures transparency in identification, comparability across categories,
and consistent analysis. Future research could investigate adaptive or event-specific
buffer sizes and complex network-based methods (e.g., isochrones, distance-decay) that
better capture the actual spatial extent of different events.

Second, our included events were limited. Expanding the analysis to include
unplanned exogenous disruptions (such as labor strikes and sudden public tran-
sit closures) would offer a more comprehensive picture of urban disruptions. This
expansion would also enable systematic comparisons among planned–exogenous,
unplanned–exogenous, and planned–endogenous events, helping to clarify how their
effects differ. Additionally, our event data relies on automated classification systems,
which, although efficient, may lead to misclassification errors or overlook subtle event
details that could impact shared micromobility patterns.

Third, we focused only on shared micromobility. The data comes from a single
operator, which might limit how well our findings represent the entire shared micromo-
bility in DC, as different operators may serve different user groups and areas. Besides,
since we only monitor trips but not fleet availability factors like idle locations, dwell
times, or capacity, our estimates reflect actual usage rather than potential demand.
During large events, limited supply might cause us to underestimate the true surge in
demand. Future improvements could include operator availability data and rebalanc-
ing logs to better identify both demand peaks and stockouts. Additionally, including
trip distance distributions and inferring trip purposes related to events can help dif-
ferentiate mandatory trips from discretionary travel. Moreover, future research could
compare these findings with the causal effects on other transportation modes, such
as ride-hailing, public transit, and private cars, to create a fuller picture of mode
shifts. In particular, quantifying cross-mode interactions, such as how shocks in one
mode spread to shared micromobility and vice versa, would clarify substitution and
complementarity at the venue scale.

Fourth, broadening the geographic scope to include cities with diverse cultural
settings and transportation systems would enhance the applicability of our results
in other contexts. Similarly, the policy implications are mainly based on this specific
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area (DC). Claims about generalizability should be approached with caution. Due to
different local contexts, other cities need to verify these findings locally (considering
season, time window, and venue type) and conduct sensitivity analyses before scaling
up.

Methodologically, for simplicity, trip volume was measured using destination
points, while a similar pattern was observed with origin points. Future research could
analyze complete trip trajectories to determine if routes change during events or road
closures. It is also worth noting that despite our rich set of controls, we cannot entirely
eliminate the influence of unobserved confounders that might affect both event occur-
rence and shared micromobility usage. Broader seasonal factors, such as changes in
travel behavior during holidays, are also not fully balanced by our matching strat-
egy and may introduce residual variation. Finally, explicit causal diagrams such as
directed acyclic graphs (DAGs) would clarify variable relationships, but constructing a
reliable DAG isn’t practical due to many correlated covariates and limited knowledge
of their links. DML directly estimates causal effects, bypassing the need for a com-
plete causal graph. Future research might explore machine-learning methods for causal
structure discovery, potentially enabling DAGs to be learned from high-dimensional
data to improve interpretability. Exploring more complex causal structures or natural
experiments could further enhance the validity of these findings. Integrating causal
inference with structural choice and route models offers a promising research path for
creating hybrid methods that connect behavioral understanding with policy-relevant
causal insights.

6 Conclusion

This study offers a thorough, causal understanding of how events influence shared
micromobility use in Washington, D.C. Although the case is DC, the framework is
mode- and city-portable wherever similar data and event records exist. By combining
high-resolution trip data with a collection of event records and employing a causal
inference approach, we move beyond simple correlations to identify the factors driving
demand during events. The shift from correlation to causation modeling represents a
major advance in urban science. In this work, we showed that traditional analytical
methods can be limited, either by underestimating the appeal of major cultural events
or by identifying spurious associations that do not reflect a true causal link. Policies
and investments based only on correlational data risk being inefficient or misdirected.
By carefully isolating the impact of events, this research provides a blueprint for
accurately assessing the effectiveness of urban interventions in complex, real-world
environments.

For policymakers and operators, this study offers practical insights. Urban spaces
actively interact with special events to shape shared micromobility demand. The
significant impact of large festivals and entertainment events requires proactive
management, including targeted infrastructure upgrades in event zones and flexible
resource allocation. The minor role of built environment factors for smaller events sug-
gests that operational strategies, rather than costly infrastructure projects, are key
to increasing ridership for these gatherings. Ultimately, this research enables cities to
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strategically utilize shared micromobility, boosting urban vitality, improving access to
public life, and developing more resilient transportation networks that adapt to both
daily routines and special occasions.

Appendix

Table 7: LightGBM prediction performance (R2, RMSE, MAE) for
estimating event-period shared micromobility ridership from observed
covariates, conditional on an event occurring.

Event category & subcategory Event Number R2 RMSE MAE

Small event 1480 0.7843 27.55 12.89
Entertainment 441 0.9322 13.25 7.50
Education 426 0.8018 20.26 9.68
Festival 323 0.9228 24.76 9.42

Large event 163 0.1252 968.44 376.49
Parade 32 0.9738 87.19 42.82
Entertainment 25 0.6793 442.72 237.84
Festival 55 0.0495 1490.25 653.81

Note: Small art events and large sports events are excluded here due to their insignificant correlation
and causal effects.

In the LightGBM model, we identified key variables correlated with ridership and
evaluated how well these covariates can predict shared micromobility demand when
an event occurs. Table 7 shows that the model performs substantially better for small
events than for large ones. For small events, the R2 value indicates that approximately
78% of the variation in ridership can be explained by the observed covariates, and the
RMSE is comparatively low. This suggests that trip patterns during small events are
relatively stable and well captured by the available data.

In contrast, predictive power for large events is considerably weaker: overall R2

drops to around 12%, and the RMSE increases by an order of magnitude, reflecting
much higher variance in ridership responses. We also observe notable differences across
large-event subcategories. Ridership during parades is highly predictable. Entertain-
ment events show moderate predictability, while festival-related ridership is nearly
impossible to predict from the covariates alone. These results highlight that the
mobility impacts of large events are more heterogeneous and influenced by additional
unobserved factors not captured in the model.
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