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Abstract The desire to share one’s location with friends and family or to
use location information for navigation and recommendations services is of-
ten overshadowed by the need to preserve privacy. As recent progress in big
data analytics, ambient intelligence, and conflation techniques is met with
the economy’s growing hunger for data, even formerly negligible digital foot-
prints become revealing of our activities. The majority of established geo-
privacy research tries to protect an individual’s location by different masking
or perturbation techniques or by suppressing and generalizing an individual’s
characteristics to a degree where she cannot be singled out from a crowd. In
this work we demonstrate that location privacy may already be compromised
before these techniques take effect. More concretely, we discuss how everyday
digital footprints such as timestamps, geosocial check-ins, and short social
media messages, e.g., tweets, are indicative of the user’s location. We focus
particularly on places and highlight how protecting place-based information
differs from a purely spatial perspective. The presented research is based on
so-called semantic signatures that are mined from millions of geosocial check-
ins and enable a probabilistic framework on the level of geographic feature
types, here Points Of Interest (POI). While our work is compatible with
leading privacy techniques, we take a user-centric perspective and illustrate
how privacy-enabled services could guide the users by increasing information
entropy.
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1 Introduction and Motivation

While data privacy continues to be an area of worry and confusion for many,
recent concerns over the privacy of location information specifically have come
to the societal forefront. With the increase in mobile devices, as well as techni-
cal advances in ambient intelligence powered by the Internet of Things (IoT),
location information has become ubiquitous. It has been widely recognized
that the resulting technological and social implications will change our un-
derstanding of privacy [9, 35]. In fact, personal location information is now
arguably a commodity to be traded for services, e.g., for navigation applica-
tions, local search, and coupons. Social media have also had a role to play
in the advancement of location information usage. An increasing number of
social applications allow, and increasingly require, some aspect of location to
be shared, be it through posts, messages, check-ins, or photos. While many
of these services request location information to improve the user experience,
e.g., to show nearby places recommended by friends, other services do not
provide clear benefits to the user and collect a variety of personal data in
the background [27]. A recent study, for instance, shows that smartphone
users are still unaware of the extent and also the frequency at which their
personal data are being collected and that they would benefit from more fine
grained privacy settings and alerts [2]. Even coarse location information can
be revealing. In fact, 95% of individuals can be uniquely identified by just 4
spatio-temporal fixes from cell antennas [12].

Consequently, when discussing geo-privacy, people primarily think of ge-
ographic coordinates and positioning techniques such as Global Navigation
Satellite Systems (GNSS), Wi-Fi-based positioning systems (WPS), Blue-
tooth Low Energy (BLE) beacons, or radio towers. There are, however, var-
ious other possibilities to infer somebody’s location and, at least in terms
of geo-privacy, some of them may be more revealing than geographic coordi-
nates alone. Additionally, these approaches do not require access to the user’s
mobile device. This is particularly important as it dramatically increases the
number of parties that may infer a user’s location. In contrast to positioning
techniques, these approaches rely on the notions of place and place types in-
stead of merely focusing on geographic space. Intuitively, there are certain,
often latent, place characteristics that emerge from human behavior towards
these places and define them as being of a common type, e.g., bar or office.
With respect to temporal characteristics, for instance, a place that is mostly
visited during the evenings and weekends is more likely a bar than an office
building. Similarly, a place where people predominantly talk about tacos,
burritos, and tequila is more likely to be a Mexican restaurant than a Polish
restaurant. In an analogy to remote sensing, a set of spatial, temporal, and
thematic characteristics that jointly identify a type of place is referred to as
the semantic signature of said type [21].

In this work, we employ these signatures to demonstrate how apparently
harmless digital footprints such as social media messages, check-in times-
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tamps, and so forth can be used to compromise a user’s geo-privacy before
position masking techniques come into play. While our work is compatible
with established methods for location privacy, we focus on digital footprints
here and how types of places impact geo-privacy. The concern in this case is
that people should be aware that even if they don’t explicitly share their ge-
ographic coordinates that their location can be probabilistically determined
based on the words that they write, the timestamps that they make public,
and a basic understanding of the spatial and platial1 configuration of a city.

The contributions of this work are as follows:

1. We build on existing work in the area of geo-privacy to show how non-
spatial content published by an individual can lead to the disclosure of
information directly related to her location.

2. We demonstrate how semantic signatures, built from millions of geosocial
footprints, can be used to infer the place type of the location someone is
visiting. Moreover, we show that it is possible to quantify this inference
and calculate the probability of determining one’s location based on her
content.

3. We offer a window into what is possible provided seemingly innocuous
information. This work suggests ways that content publishers may adjust
one or more pieces of published content in order to reduce the risk of
revealing their location.

The remainder of the paper is organized as follows. Section 2 introduces re-
lated research relevant for the work at hand. Section 3 introduces the datasets
used for our study and briefly reviews how the semantic signatures were con-
structed. Three different groups of semantic bands (spatial, temporal and
thematic) are discussed in the section following this (Section 4). In Section 5,
we implement our approach through a use case that demonstrates the impor-
tance of the semantic signatures in privacy preservation. Finally, we conclude
with ideas for future work in Section 6.

2 Related Work

Geo-privacy research efforts in the GI science community have focused pri-
marily on geomasking or obfuscation techniques, which introduce inaccuracy
to geographic coordinates in an effort to balance the protection of location
privacy and preservation of spatial information [4]. Attention to the devel-
opment and evaluation of geomasking procedures has given rise to a large
body of work in recent years [19, 37, 10, 22, 31, 32, 38]. The foci of masking
studies, which include the testing of distance thresholds and quantification

1 Following recent literature, we will use the term platial here for ‘place-based’[18].
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of personal reidentification risk, remain unable to address the impact on lo-
cation privacy of individuals generating location-bearing content outside a
masked data set. A major missing component from these works is the con-
sideration of other data disclosing personal locations even when geographic
coordinates are omitted or masked to remain confidential.

Geo-privacy in masking studies is often defined as the right of the indi-
vidual to determine how, when, and the extent to which his or her location
data is shared with others [14]. This definition places an emphasis on human
agency in privacy rights and is arguably unrealistic in a digital age character-
ized by frequent and rapid data exchange, where it is difficult to keep track of
the parties to which personal data are transmitted. Setting a concrete defini-
tion of geo-privacy also opposes other frequently cited conceptual approaches
that eschew specific definitions. The definition presented here, however, is in
line with the purpose of this paper, which is to introduce unique means by
which content publishers, e.g., social media users, may control the release of
their location data, namely by considering what is possible with semantic
signatures.

The measurement of privacy in a release of data is framed as the risk of
identity disclosure. The principle of k-anonymity describes a release of data
where each person in the data set is indistinguishable from k-1 other individ-
uals in the same data set [34]. The k-anonymity property does not recognize
the side information that an adversary might have about an individual in
the database. Another development in information privacy studies is differ-
ential privacy, which addresses the problem auxiliary information outside a
database poses to the notion of absolute disclosure prevention [15].

Compared to data collected and transferred to third parties in traditional
data collection models, individuals do have some agency in the location in-
formation they share in user-generated content. The benefits of participation
in location-sharing applications (LSAs) or other social networks tend to out-
weigh perceived privacy risks for users. Social influence is shown to have a
strong impact on the adoption of a location sharing application (LSA) among
university students [6], which extends from having friends or peers known to
use the application. Users of the location check-in application Foursquare re-
port that motivations for location sharing include coordination with friends,
presentation of self, gaming aspects, and peace of mind or safety purposes
[24]. Location reporting in other social media is not limited to GPS-assisted
check-ins, and may be based on text content. Consider the message, “finally
home,” which may be posted for peace of mind or coordination purposes. The
site “Please Rob Me”2 used a classifier predicting whether or not a Twitter
user was home based on tweets to demonstrate how such information could
be exploited by an adversary [16].

Another consideration for this work is whether content publishers are likely
to embrace new options for protecting their geo-privacy. A survey of location

2 http://pleaserobme.com



Geo-privacy beyond coordinates 5

privacy preferences for personal GPS data finds that providing more complex
privacy options, including setting temporal limits and specific locations that
may not be shared, leads to more location sharing [7]. This provides support
for developing an application that allows users to fine-tune privacy settings
based on semantic signatures. It also debunks the idea that increased privacy
support is at odds with information sharing.

3 Data and Semantic Signatures

For the analysis and examples used in this paper we accessed POI data from
Foursquare’s public facing application programming interface (API).3 A total
of 908,031 randomly selected Foursquare venues4 were accessed, each cate-
gorized into one of 421 Foursquare-defined place types. These types are hi-
erarchically organized into three levels, e.g., Arts & Entertainment > Movie
Theater > Indie Movie Theater. Analyzing attributes of these POI and ag-
gregating them to the type level allows us to derive semantic signatures [21].
Semantic signatures use digital footprints emitted from humans such as terms
that are associated with certain place types, times at which places of a given
type are typically frequented, and so forth.

To construct temporal bands, each POI in the dataset was accessed every
hour for four months starting in October 2013. The number of check-ins was
recorded and cleaned allowing for a popularity distribution to be calculated
through aggregating data to the place type level. To further strengthen the
temporal bands, the four months of check-ins were distilled down to hours
of the day over the course of a single week. This produced an array of 168
temporal bands (24 hours × 7 days). These bands can be further aggregated
into courser resolution bands which are discussed in Section 4.2.

Thematic bands are constructed from the unstructured textual content
provided as tips by people that have visited POI. Tips are essentially reviews
that a visitor uses to describe or comment on a place. All tips were accessed
for each POI in the Foursquare venue dataset mentioned previously. The
tips were combined based on place type, stemmed, and cleaned (punctuation
and stop words were removed). To ensure robust data signatures, only those
place types with 30 or more tips were included in this textual analysis. Latent
Dirichlet allocation (LDA) [8] was used to mine topics from the text and as-
sign probabilistic topic distributions to each of the place types. LDA analyzes
documents (aggregate of tips by place types in this case) and extracts topics
based on the co-occurrence of words. This allows place types to be described
as a distribution of topics extracted from the textual content contributed by

3 https://developer.foursquare.com/docs/venues/search
4 Venue in this case is the Foursquare-specific term for Point of Interest
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individuals to those place types. We call these topic distributions thematic
bands. In this work, 200 topics (thematic bands) are used.

Spatial bands are developed by exploring the geospatial patterns within the
POI data. A number of different approaches are used to create these bands.
Spatial descriptive statistics such as Ripley’s K function are used to estimate
the deviation of POI place types from spatial homogeneity. In previous work
these place type functions have been binned by distance and combined with
other spatial dispersion techniques such as Average Nearest Neighbors (ANN)
and Voronoi place-type variance to produce a range of spatial bands [29].

For the purposes of this research, further investigation into the role of
semantic signatures in location privacy focuses specifically on examples in
the greater Los Angeles region. The boundary of this region was determined
through the 2014 U.S. census urban areas dataset and the boundaries of
240 neighborhoods within this region were ascertained from the 2014 census
designated places dataset.

4 Indicativeness of Digital Footprints

In this section, we present a number of ways that information shared by an
individual could be used to expose her location. A multidimensional approach
is outlined exploiting the spatial layout of POI, the unique temporal popu-
larity distributions of place types, and the thematic structure that can be
extracted from text. The impact of each group of semantic bands is discussed
individually and implemented as a whole in Section 5.

4.1 Spatial Indicativeness

To start with an illustrative example, imagine a user publishing content via
her favorite social networking application, stating that she is at a Mexican
restaurant in neighborhood N . We assume for the purposes of this research
that we have access to a complete POI gazetter for the greater Los Angeles
region (e.g., Foursquare venue set).

If N is East Los Angeles, the probability of determining her location is
quite low compared to other neighborhoods (Figure 1a). East Los Angeles
has one of the highest ratios of Mexican restaurants to all other POI types
in the region, namely 50 out of 809 (0.062). In comparison, the probability
of randomly selecting a Mexican restaurant in Beverly Hills (Figure 1b) is
merely 4 out of 900 (0.004).

Consequently, knowing that a user is at a Mexican restaurant and in a spe-
cific neighborhood significantly impacts the ability to locate this individual.
With access to a public POI dataset, the above example shows just how dif-
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ferent two neighborhoods are with regards to platial privacy. In other words,
the same place type can be revealing in one neighborhood, while it does not
expose the user’s likely location in another neighborhood.

(a) East Los Angeles (b) Beverly Hills

Fig. 1: Mexican restaurants compared to all POI in two greater Los Angeles
neighborhoods.

If an individual were to state the name of the establishment, e.g., indicate
that she were at the chain restaurant Chipotle Mexican Grill, this would fur-
ther increase the probability of determining her exact location within Beverly
Hills. In this case, two of the four Mexican restaurants in Beverly Hills be-
long to the chain and therefore have the same name. In comparison, in East
Los Angeles, no two Mexican restaurants have the same name. Thus, any
indication of the place name on the part of the user immediately identifies
her location to the place instance level.

Given the hierarchy of place types introduced in Section 3, we can increase
location privacy by simply moving one level up in the place type hierarchy. For
example, in the Foursquare place type vocabulary, Food is the category into
which Mexican Restaurant is assigned (along with numerous other restaurant
types, grocery stores, etc.). Comparing the number of POI categorized as Food
to all POI in the dataset, the ability to locate someone in Beverly Hills based
purely on place types drops considerably from 4 out of 900 POI (Mexican
Restaurant) to 163 out of 900 (Food). Of the 240 neighborhoods in the greater
Los Angeles region, Beverly Hills drops from 4th to 193rd with regards to its
ability to locate someone based on place type. East Los Angeles on the other
hand drops to a ratio of 0.234 (189 out of 809). This signifies a substantial
decrease in identifiability, but not to the same extent as in Beverly Hills.
Table 1 shows a sample of LA neighborhoods along with ratios for Mexican
Restaurants and Museums as well as their parent categories Food and Arts
& Entertainment respectively.

The importance of spatial clustering within the POI dataset must also be
considered. Simply knowing a place type and its prevalence within a region
is valuable, but knowledge of the spatial distribution of the place type within
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Neighborhood POI Count Mexican
Restaurant

Food Museum Arts and En-
tertainment

Redondo Beach 948 0.014 0.217 0.000 0.023

Inglewood 998 0.025 0.200 0.000 0.024

Monterey Park 1,085 0.007 0.190 0.001 0.013

Torrance 2,731 0.011 0.168 0.001 0.017

Malibu 1,070 0.006 0.089 0.002 0.026

Santa Monica 1,443 0.016 0.243 0.001 0.038

Culver City 993 0.011 0.209 0.003 0.050

Stevenson Ranch 19 0.000 0.316 0.000 0.000

East Los Angeles 809 0.062 0.234 0.000 0.011

Beverly Hills 900 0.004 0.181 0.002 0.047

All POI 208,682 0.015 0.150 0.001 0.025

Table 1: A sample of neighborhoods in Los Angeles showing total POI within
each neighborhood along with ratios for four different place types at two
different levels in the place type hierarchy.

the region may also lead to an increase in identifying a user’s location. For
example knowing that an individual is located at a place type that is highly
clustered in a region minimizes the time necessary to find them (e.g., search
and rescue operation).

Figure 2 depicts Ripley’s K statistics [13] for three place types as well as
all places of interest in the Los Angeles. It shows the deviation from spatial
homogeneity (shown as the dashed gray line in this Figure). Naturally, place
types such as Mexican restaurants show stronger clustering at a smaller dis-
tance than police stations or farmer’s markets. Other methods for assessing
the spatial indicativeness of a geospatial dataset have also proved valuable,
including spatial entropy [5].

4.2 Temporal Indicativeness

By way of another example, let us assume that an individual chooses not to
publish the place type of the location but rather the time at which she is
visiting a specific neighborhood N . Previous research has shown that time is
highly indicative of the types of places that people visit [28]. As one might
expect, it is highly unlikely that someone posting from Los Angeles at 5 am
on a Monday is at the Department of Motor Vehicles. Similarly, one is less
likely to locate someone at a nightclub at 9 am on a Monday.

Using the temporal bands we can probabilistically estimate an individual’s
location given a specific time. These probabilities can work at multiple levels
of granularity. Figure 3 shows temporal signatures for three different place
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Fig. 2: Plot of Ripley’s K functions for three POI categories as well as all
POIs in the greater Los Angeles region.

types with increasing levels of temporal granularity. Consulting the values in
this Figure, an individual that is very precise in mentioning the time in an
online post, e.g., 9 pm on a Friday night, would be more likely to be found at
a bar, then at an office building. These bands can be aggregated based on the
level of temporal granularity published. Say an individual solely mentioned
the time of day, e.g., 9 am, and not the day of the week, then this method
would return office building as the most probable place type.

Unsurprisingly, different temporal bands offer different amounts of infor-
mation about the platial location of an individual. For instance, someone who
only mentions 5am on a Monday when publishing content is unlikely to be
at Department of Motor Vehicles. Realistically, the probability of this person
being anywhere except at home is rather small. On the other hand, if this
person were to mention 6pm on a Friday there is a much wider range of places
this person could be given the activities that are possible at this time. To put
it more formally, each temporal band can be defined by the unpredictability
of the place types one might visit, which can be represented through Informa-
tion Entropy [33]. 5am on a Monday has relatively low information entropy
when compared to 6pm on a Friday, given that one could more easily pre-
dict the place type of an individual in the first case, namely in some form of
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Fig. 3: Temporal bands aggregated to different granularities and split by three
example place types.

accommodation. Information entropy (ET ) is defined in Equation 1 where pi
is the probability of a given temporal band.

ET = −
∑
i

pi log2(pi) (1)
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Low Entropy High Entropy

Day Hour Entropy Day Hour Entropy

Monday 05:00:00 AM 4.76 Thursday 07:00:00 PM 5.97

Monday 04:00:00 AM 4.87 Tuesday 07:00:00 PM 5.96

Tuesday 04:00:00 AM 4.93 Friday 06:00:00 PM 5.95

Thursday 04:00:00 AM 4.95 Friday 07:00:00 PM 5.94

Tuesday 03:00:00 AM 4.99 Saturday 12:00:00 PM 5.93

Table 2: Information entropy for five lowest and five highest temporal bands.

Previous work [29] explored the amount by which the hourly temporal
bands are unpredictable. Computing entropy across check-ins to all POI in
the dataset showed that there is a statistical difference in the information that
is presented between the hourly temporal bands (Table 2). This is important
as the ability to determine the place where someone is can drastically increase
depending on the time that she publishes content.

4.3 Thematic Indicativeness

The words and language that people use when talking about the activities
are indicative of the type of place they are doing the activity. Previous work
in this area has shown that non-geographic terms and phrases can be geospa-
tially indicative [1, 25]. The results show that words in the English language
can be tied to some region on the planet with varying levels of probability.

The thematic bands introduced in Section 3 define each place type in the
Foursquare dataset as a distribution across topics. In short, the place types
are defined by the language of the people that have visited them. Three
examples of topics extracted from the unstructured natural language of the
Foursqure tips are shown in Figure 4 as word clouds of the topic’s most
prevalent terms.

Using these thematic bands as the foundation, we use an LDA inference
approach [26] to infer a distribution of these same topics for any new un-
structured text-based document. For example, given content such as,

“So glad I made it in to deposit my check at the ATM before they closed.”

we, as humans, likely infer that the user is at a bank. From a computational
perspective, an LDA model would need to construct a topic distribution for
this text that would likely place a high probability on the topic related to
banking (Figure 4b), low probability on the topic related to Mexican food
(Figure 4a) and somewhere in the middle for the non-place type topic (Figure
4c). It is also likely that the bank place type follows a very similar topic
distribution to the topic distribution of the sentence above. Jensen-Shannon
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(a) (b) (c)

Fig. 4: Three example topics represented as word clouds of their most preva-
lent terms. (a) Terms related to Mexican food (b) Banking related terms (c)
Non-place type specific terms.

distance (JSd) [23] (Equation 2) is used to measure the dissimilarity between
our newly created topic distribution (P ) and each of the topic distributions
for all 421 place types (Q). KLD (Equation 3) represents the Kullback–
Leibler divergence and the lowercase d in JSd signifies Distance instead of
Divergence. M is equal to 1

2 (P + Q). The smaller the dissimilarity value
(bounded between 0 and 1), the more likely it is that our example content
can be assigned to that place type. In this simplified example, the sentence
above shows the least dissimilarity with the bank place type, and thus the
user is said to be most likely at a bank. An implementation of this model is
discussed in further detail in Section 5.

JSd(P ‖ Q) =

√
1

2
KLD(P ‖M) +

1

2
KLD(Q ‖M) (2)

KLD(P ‖ Q) =
∑
i

P (i) log2

P (i)

Q(i)
(3)

5 Implementation: A Use Case

In the previous sections, we discussed the various bands of semantic signa-
tures and the ways in which these bands contribute to determining the place
where someone is. In this section, we bring the bands of the semantic sig-
natures together to implement one approach that determines a user’s place.
An example use case is introduced, and the parameters are altered to show
how sensitive the model is to changes. A first implementation of a formula is
introduced to quantify the place-based privacy implications of the content.
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5.1 Thematic Content

To start, let us imagine that an unknown individual publishes some small
amount of unstructured content, e.g., a tweet. In this first iteration of the
example, the content is both thematic and spatial but does not include any
temporal property.

“Excited for chicken tacos and delicious salsa in Beverly Hills.” (1)

After stemming, a topic distribution for the text is inferred through an
LDA topic inferencer based on the topic distributions (200 topics) learned
from the 421 place types (thematic bands). A JSd dissimilarity value is then
computed between the topic distribution for this text and each of the place
type topic distributions. Note that this example uses a very small amount of
text, so the inference model has a limited amount of data on which to infer
the topic distribution. A greater amount of data would arguably lead to more
accurate results. The top 10 least dissimilar place types are shown in Table
3.

Place Type JSd Dissimilarity Value

Mexican Restaurant 0.267

Taco Place 0.268

Food 0.301

Bar 0.302

Restaurant 0.309

American Restaurant 0.317

Building 0.321

Miscellaneous Shop 0.321

College Cafeteria 0.329

Food & Drink Shop 0.330

Table 3: Top 10 place types that are least dissimilar from the sample content
(Quote 1).

The place types listed vary in their specificity. Taco place is a sub type
of Mexican restaurant while building is a very generic place type. To put
it another way, the descriptive content contributed as tips about taco places
are narrower in their theme than the building place type which might include
a wide range of themes related to places that exist within a building, e.g.,
restaurant types or car mechanics. Equation 4 shows how the thematic prop-
erty of a place type (PTTheme) is quantified. Note that this function simply
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converts the dissimilarity value into a similarity value (higher value = better
match).

PTTheme = 1− PTJSd (4)

5.2 Spatial Constraints

From a regional or spatial perspective, the content in Quote 1 indicates that
the publisher is in Beverly Hills. We know from our gazetteer of places that
there are four Mexican restaurants within the neighborhood boundary. Mak-
ing the assumption that there is a certain region around an individual’s point
location that they can sense (e.g., visually, auditory), we construct a grid over
a region. We expect that one would be able to locate something or someone
reasonably quickly within this region. Provided this assumption, we overlay a
500×500 meter cell grid over the Beverly Hills neighborhood in Los Angeles.
Recording the presence or lack thereof of POI in each grid cell we find 115
out of 118 grid cells contain at least one POI. Of these, 2 grid cells contain
at least one Mexican restaurant producing a ratio of 2/115 or 0.017.

Through these two data dimensions we are able to first determine the
place type of the user and building off this constraint, spatially restrict the
location possibilities. Using a rudimentary cell-based clustering technique we
can further restrict the expected spatial locations of a content publisher.

5.3 Spatial Change

Building on the content of Quote 1, let us imagine that instead of sharing
Beverly Hills as her location, this person mentions East Los Angeles. The
textual content remains the same, so we have still determined that Mexican
restaurant is the probable place type, but in this case, the number and spatial
layout of place instances matching this criteria has changed. Overlaying the
same 500×500 meter cell grid over East Los Angeles we find that 112 out
of 136 cells contain at least one POI and of these cells, 36 contain at least
one Mexican restaurant resulting in a ratio of 0.321. So while the place type
remains the same, the difference in spatial layout of these two neighborhoods
means that there is a substantially lower chance of someone locating the user
in East Los Angeles compared to Beverly Hills.

While the ratio is informative, the raw cell count is important here as well.
Tasked with finding the publisher of the content a user would have to travel
to 36 different regions (cells) in East Los Angeles but only 2 in Beverly Hills.
Stepping back to the entire greater Los Angeles region, there are 98,461 cells
that overlap neighborhood boundaries, and of these, 26,311 contain POI. Of
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the cells containing at least one POI, 2,328 contain at least one Mexican
restaurant, producing a ratio of 0.088. Taking this ratio by itself implies that
on average it is harder to locate someone at a Mexican restaurant in East Los
Angeles than in the greater Los Angeles area overall. Though in this case,
one would have to travel to 2,328 different regions (cells) in order to find the
content publisher.

A relative effort value bounded between 0 and 1 is proposed by multiplying
the number of likely cells by the ratio and dividing by the total possible
set of cells over the regions. Table 4 lists the resulting effort values for the
neighborhoods previously discussed.

Neighborhood Mexican
Restaurant
Cells

Ratio Total
Cells

Effort
Value
(×104)

Beverly Hills 2 0.017 136 2.5

East Los Angeles 36 0.321 118 979.3

greater Los Angeles region (Full area) 2,328 0.088 98,461 20.8

Table 4: Effort values for two neighborhoods, Beverly Hills and East Los
Angeles. The Greater Los Angeles region is shown for comparison.

5.4 Content Change

Again, let us slightly alter the published content and observe the implications
on location privacy. Keep in mind that the actual location of the user (Beverly
Hills) and activity (eating Mexican appetizers) remains the same. If instead of
posting about the specific type of appetizer, the user generalizes her content
as shown in Quote 2, what impact does this have on our ability to locate her?

“Excited for great chicken appetizers in Beverly Hills.” (2)

A topic distribution for this new content is again inferred from the existing
LDA topic model and JSd is used to calculate the dissimilarity between this
topic distribution and all place type topic distributions. The top ten least
dissimilar place types are shown in Table 5.

Importantly, Mexican restaurant, presumably the place type the user is
currently enjoying their food, appears nowhere in the list. The best match is
instead, food, which is the parent category of Mexican restaurant, as well as
many other place types. Instead of 4 possible locations in Beverly Hills, we
are now faced with 163 possible locations. At least one food location exists
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Place Type JSd Dissimilarity Value

Food 0.263

Restaurant 0.268

American Restaurant 0.275

Miscellaneous Shop 0.276

Cafeteria 0.287

Cafe 0.305

Building 0.310

Assisted Living 0.312

College Cafeteria 0.313

General Entertainment 0.322

Table 5: Top 10 place types that are least dissimilar from the sample content
(Quote 2).

in 44 of the 112 cells leading to a ratio of 0.393 and an effort value of 0.127.
A similar adjustment is seen in East Los Angeles and for the greater Los
Angeles region overall. Note that the broad activity of going out for food,
even more specifically, appetizers, has not been lost through adjusting the
text. By simply publishing a more generic term as part of her content, the
publisher decreased her ability to be found in Beverly Hills dramatically.

5.5 Temporal Baseline

In addition to the textual and regional content specified in the examples
above, one could imagine that someone might also tag their post with some
type of temporal information. For example, a user might add the time Friday
at 7pm (e.g., as a meeting time) to the text.

In this example, the time is reported to a high granularity, permitting us to
employ the 168 band temporal signatures in determining the place type prob-
ability. Taking the temporal signatures for each place type, we can directly
compare the probabilities for Friday (Figure 5) at 7pm. For the purposes of
this example, we have reduced our set of 421 place types to the three shown in
this Figure. Of these three, Mexican restaurant is the place type showing the
highest probability at this time. Based on this information alone, we make
the assumption that the user is at a Mexican Restaurant in Beverly Hills.
This is in agreement with our text-based topic analysis discussed in Section
5.1.

This is not the entire story, however. While Mexican restaurant shows the
highest temporal probability at 7pm on a Friday, visually, it is followed quite
closely by bar (Figure 5). Computationally we can quantify this concern by
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Fig. 5: Hour resolution temporal bands for Bar, Office and Mexican Restau-
rant on Friday.

referencing the information entropy for the hourly temporal signatures (a
sample is shown in Table 2). Friday at 7pm lists the fourth highest entropy
value. The high entropy of this band tells us that in general, at 7pm on a
Friday night, people tend to be at quite a range of place types. Conceptu-
ally, this makes sense as this is the start of the weekend, and people could
be engaging in a range of activities (e.g., watching a movie, at a bar, eat-
ing dinner, etc.). Knowledge of this high entropy reduces our certainty in
determining the place type of the user and therefore has an impact on our
overall ability to establish the platial location of the user. The influence of
temporal bands can be quantified using Equation 5, where PTtp represents
the temporal probability of the given time band, max(tp) is the maximum
temporal band value, and PTE is the information entropy of the given time
band.

PTTime = PTtp/max(tp)×W + (1− PTE/max(E))× (1−W ) (5)

If we set the weight component W equal to 0.5 and assume a time of 7pm
on Friday, Mexican restaurant produces a PTTime value of 0.382, while Bar
lists a value of 0.345. Importantly, the information entropy values remain
the same in this case. This allows us to compare place types across different
temporal bands.

What would happen if instead of Friday at 7pm, the user tweets out her
message one hour later? The information entropy for 8pm on a Friday is 5.852
(compared to 5.932 at 7pm). The order of temporal probabilities has shifted
as well with bar now slightly more probable than Mexican restaurant, 0.022
and 0.019 respectively. These changes lead to revised PTTime values for the
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two place types. Mexican restaurant has dropped to 0.351 while Bar has risen
to 0.389. Though minute, a one hour adjustment has had a significant impact
on determining the place type. At 8pm on Friday, the temporal bands now
indicate that the user is likely at a bar.

5.6 A Combined Approach: Thematic & Temporal
Bands

We now need to combine the two values calculated through referencing the
thematic and temporal bands into a single value which indicates the most
likely place type for the user. In the case of Friday at 7pm, both the tem-
poral band and thematic band indicate that the user is likely at a Mexican
restaurant. One hour later offers a different perspective with the textual con-
tent indicating a Mexican restaurant and the temporal component suggesting
a bar. A single value can be calculated through Equation 6. Note that the
equation gives the option of weighting one component over another.

PTProb
.
= PTTheme ×W + PTTime × (1−W ) (6)

Time Thematic Temporal Combined

Place Type Mex bar Mex bar Mex bar

Friday 7pm 0.733 0.607 0.381 0.351 0.558 0.542

Friday 8pm 0.733 0.607 0.345 0.389 0.521 0.543

Table 6: Statistical approach to determining place type based on temporal
and thematic bands.

With equal weights of 0.5, Table 6 shows the resulting place types depend-
ing on time and theme. The thematic properties of both Mexican restaurant
and bar remain the same across time, while the temporal properties change
based on the values computed in Equation 5. The combined value is calcu-
lated through Equation 6. Not surprisingly, the results suggest that the user
is likely at a Mexican restaurant on Friday at 7pm, since both the thematic
and temporal values agree. More interestingly, at 8pm, this method deter-
mines that the user is slightly more likely to be at a bar, even though the
content suggests that she is likely to be at a Mexican restaurant.
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6 Conclusions & Future Work

In this work we discuss the use of semantic signatures for exposing loca-
tion information about a user through the content that she publishes. These
semantic signatures, described through various spatial, temporal, and the-
matic bands mined from user-generated geosocial content, have shown to be
an important basis on which the place type of an individual’s location can be
determined. Despite omitting or masking geographic coordinates, the meth-
ods presented in this work show that a person’s location can still be revealed
through comparing the signatures to non-geotagged content published by an
individual. We propose a method to compute the location indicativeness of
the signatures, i.e., the ability to locate somebody based on their published
content.

Our initial findings suggest that protecting a user’s geographic coordinates
and other potentially revealing characteristics, such as ethnicity, is not suffi-
cient as everyday digital footprints can give away the user’s location as well.
These findings, for instance, could be used to develop mobile applications that
helps users, e.g., political activists, to make small changes to their content in
order to better protect their geo-privacy.

Future work in this area will focus on expanding the range of semantic
signatures. For example, the data collection for check-ins is currently being
expanded to look at yearly data with the goal of exploiting seasonal effects on
place type check-ins. Furthermore, hyperlocal data such as events could be
used to enhance the robustness of these signatures. In addition, we hope to
expand this work into a prototype application or browser plug-in that reports
on the level of location privacy that is attainable based on the content as well
as spatial and temporal information that someone publishes.
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